Non-empty pairwise cross-intersecting families

IF 0.9 2区 数学 Q2 MATHEMATICS
Yang Huang, Yuejian Peng
{"title":"Non-empty pairwise cross-intersecting families","authors":"Yang Huang,&nbsp;Yuejian Peng","doi":"10.1016/j.jcta.2024.105981","DOIUrl":null,"url":null,"abstract":"<div><div>Two families <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span> are cross-intersecting if <span><math><mi>A</mi><mo>∩</mo><mi>B</mi><mo>≠</mo><mo>∅</mo></math></span> for any <span><math><mi>A</mi><mo>∈</mo><mi>A</mi></math></span> and <span><math><mi>B</mi><mo>∈</mo><mi>B</mi></math></span>. We call <em>t</em> families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> pairwise cross-intersecting families if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> are cross-intersecting for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>≤</mo><mi>t</mi></math></span>. Additionally, if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for each <span><math><mi>j</mi><mo>∈</mo><mo>[</mo><mi>t</mi><mo>]</mo></math></span>, then we say that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> are non-empty pairwise cross-intersecting. Let <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>⊆</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd></mtr></mtable><mo>)</mo></mrow></math></span> be non-empty pairwise cross-intersecting families with <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mo>⋯</mo><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> be positive numbers. In this paper, we give a sharp upper bound of <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msub><mrow><mi>d</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></math></span> and characterize the families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> attaining the upper bound. Our results unifies results of Frankl and Tokushige (1992) <span><span>[5]</span></span>, Shi, Frankl and Qian (2022) <span><span>[15]</span></span>, Huang, Peng and Wang <span><span>[10]</span></span>, and Zhang and Feng <span><span>[16]</span></span>. Furthermore, our result can be applied in the treatment for some <span><math><mi>n</mi><mo>&lt;</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> while all previous known results do not have such an application. In the proof, a result of Kruskal and Katona is applied to allow us to consider only families <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> whose elements are the first <span><math><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> elements in lexicographic order. We bound <span><math><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></math></span> by a single variable function <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, where <em>R</em> is the last element of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in lexicographic order, and verify that <span><math><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> has unimodality which is stronger than the extremal result. We think that the unimodality of functions in this paper is interesting in its own, in addition to the extremal result.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105981"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001201","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Two families A and B are cross-intersecting if AB for any AA and BB. We call t families A1,A2,,At pairwise cross-intersecting families if Ai and Aj are cross-intersecting for 1i<jt. Additionally, if Aj for each j[t], then we say that A1,A2,,At are non-empty pairwise cross-intersecting. Let A1([n]k1),A2([n]k2),,At([n]kt) be non-empty pairwise cross-intersecting families with t2, k1k2kt, nk1+k2 and d1,d2,,dt be positive numbers. In this paper, we give a sharp upper bound of j=1tdj|Aj| and characterize the families A1,A2,,At attaining the upper bound. Our results unifies results of Frankl and Tokushige (1992) [5], Shi, Frankl and Qian (2022) [15], Huang, Peng and Wang [10], and Zhang and Feng [16]. Furthermore, our result can be applied in the treatment for some n<k1+k2 while all previous known results do not have such an application. In the proof, a result of Kruskal and Katona is applied to allow us to consider only families Ai whose elements are the first |Ai| elements in lexicographic order. We bound i=1tdi|Ai| by a single variable function fi(R), where R is the last element of Ai in lexicographic order, and verify that fi(R) has unimodality which is stronger than the extremal result. We think that the unimodality of functions in this paper is interesting in its own, in addition to the extremal result.
非空成对交叉族
如果对于任意的 A∈A 和 B∈B 来说,A∩B≠∅Sm_2205↩,则两个族 A 和 B 是相交的。如果 Ai 和 Aj 在 1≤i<j≤t 时交叉,我们称 t 个族为 A1,A2,...,At 成对交叉族。此外,如果对于每个 j∈[t] Aj≠∅,那么我们说 A1,A2,...At 是非空的成对相交族。设 A1⊆([n]k1),A2⊆([n]k2),...,At⊆([n]kt)为非空成对相交族,t≥2,k1≥k2≥⋯≥kt,n≥k1+k2,d1,d2,...,dt 为正数。本文给出了∑j=1tdj|Aj|的尖锐上界,并描述了达到上界的族 A1,A2,...At 的特征。我们的结果统一了 Frankl 和 Tokushige (1992) [5]、Shi、Frankl 和 Qian (2022) [15]、Huang、Peng 和 Wang [10] 以及 Zhang 和 Feng [16] 的结果。此外,我们的结果可以应用于对某些 n<k1+k2 的处理,而之前已知的所有结果都没有这样的应用。在证明过程中,我们应用了 Kruskal 和 Katona 的一个结果,使我们只考虑其元素是按词典顺序排列的第一个 |Ai| 元素的 Ai 族。我们用一个单变量函数 fi(R) 限定∑i=1tdi|Ai|,其中 R 是按词法顺序排列的 Ai 的最后一个元素,并验证了 -fi(R)具有比极值结果更强的单调性。我们认为,除了极值结果之外,本文中函数的单模态性本身也很有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信