Genetic link between concealed granite and tin mineralization in the Yuling tin deposit, Nanling Range, South China: Constraints from zircon and cassiterite U-Pb dating, geochemistry, and Lu-Hf isotopes
Yong-Kang Chen , Pei Ni , Jun-Yi Pan , Yi-Ming Xu , Qi-Zhi Yang , Jian-Ming Cui , Wen-Sheng Li , Guan-Jian Fang
{"title":"Genetic link between concealed granite and tin mineralization in the Yuling tin deposit, Nanling Range, South China: Constraints from zircon and cassiterite U-Pb dating, geochemistry, and Lu-Hf isotopes","authors":"Yong-Kang Chen , Pei Ni , Jun-Yi Pan , Yi-Ming Xu , Qi-Zhi Yang , Jian-Ming Cui , Wen-Sheng Li , Guan-Jian Fang","doi":"10.1016/j.gexplo.2024.107627","DOIUrl":null,"url":null,"abstract":"<div><div>The Nanling Range in South China is a world-renowned tin (Sn)-tungsten (W) metallogenic belt. The Yuling deposit is a representative Sn deposit newly discovered in the Nanling Range in recent years. The mineralization of Sn and accompanied Pb-Zn(-Sb) is controlled by faults and hosted in shallow metamorphic sandstone of the Cambrian, with concealed granitic intrusion in the deep. Here, we report for the first time precise in-situ U-Pb dating of zircon and cassiterite, petrogeochemistry, zircon trace element and Hf isotope data from the Yuling Sn deposit to clarify the genetic link between Sn mineralization and the concealed biotite granite. The U-Pb ages of the concealed granite and Sn mineralization are 155.1 ± 0.7 Ma and 154.4 ± 1.4 Ma, respectively, indicating that Sn mineralization occurred simultaneously with Late Jurassic granitic magmatism. Combined with the geological observation that Sn mineralization developed locally near the roof of concealed granite, further attests to the close genetic link between the Yuling Sn deposit and the deep-seated concealed granite. The zircon ε<sub>Hf</sub>(t) values range from −5.14 to −1.37 (mean = −2.87), and the two-stage Hf mode ages (T<sub>DM2</sub>) range from 1.29 to 1.52 Ga (mean = 1.38 Ga), indicating that the source rocks of the Yuling granite primarily originated from the remelting of ancient crustal rocks in the Mesoproterozoic of South China, with the involvement of some juvenile mantle-derived components. The Yuling granite exhibits high content of SiO<sub>2</sub>, K<sub>2</sub>O, K<sub>2</sub>O + Na<sub>2</sub>O, low content of MgO, CaO, Ba, Sr, Ni, Cr, relatively flat REE patterns and significant negative Eu anomalies. Petrographic and whole-rock geochemical data show that the Yuling granite has an A<sub>2</sub>-type granite affinity and formed in an intraplate extensional setting of intense crust-mantle interaction similar to that of numerous A<sub>2</sub>-type granites associated with Sn-W mineralization during the early Yanshanian in the Nanling Range. It may be related to the extension and thinning of the continental lithosphere and asthenosphere upwelling induced by northwestward subduction of the paleo-Pacific plate. Moreover, the factors controlling the Sn mineralization potential of granitic magma were evaluated using zircon trace elements and petrogeochemical data. These findings indicate that the Yuling granite crystallized from higher temperature, lower water content, F-rich, and highly-fractionated reduced granitic magma. Such granitic magma is conducive to generating Sn-rich fluids and has high Sn mineralization potential.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"269 ","pages":"Article 107627"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002437","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Nanling Range in South China is a world-renowned tin (Sn)-tungsten (W) metallogenic belt. The Yuling deposit is a representative Sn deposit newly discovered in the Nanling Range in recent years. The mineralization of Sn and accompanied Pb-Zn(-Sb) is controlled by faults and hosted in shallow metamorphic sandstone of the Cambrian, with concealed granitic intrusion in the deep. Here, we report for the first time precise in-situ U-Pb dating of zircon and cassiterite, petrogeochemistry, zircon trace element and Hf isotope data from the Yuling Sn deposit to clarify the genetic link between Sn mineralization and the concealed biotite granite. The U-Pb ages of the concealed granite and Sn mineralization are 155.1 ± 0.7 Ma and 154.4 ± 1.4 Ma, respectively, indicating that Sn mineralization occurred simultaneously with Late Jurassic granitic magmatism. Combined with the geological observation that Sn mineralization developed locally near the roof of concealed granite, further attests to the close genetic link between the Yuling Sn deposit and the deep-seated concealed granite. The zircon εHf(t) values range from −5.14 to −1.37 (mean = −2.87), and the two-stage Hf mode ages (TDM2) range from 1.29 to 1.52 Ga (mean = 1.38 Ga), indicating that the source rocks of the Yuling granite primarily originated from the remelting of ancient crustal rocks in the Mesoproterozoic of South China, with the involvement of some juvenile mantle-derived components. The Yuling granite exhibits high content of SiO2, K2O, K2O + Na2O, low content of MgO, CaO, Ba, Sr, Ni, Cr, relatively flat REE patterns and significant negative Eu anomalies. Petrographic and whole-rock geochemical data show that the Yuling granite has an A2-type granite affinity and formed in an intraplate extensional setting of intense crust-mantle interaction similar to that of numerous A2-type granites associated with Sn-W mineralization during the early Yanshanian in the Nanling Range. It may be related to the extension and thinning of the continental lithosphere and asthenosphere upwelling induced by northwestward subduction of the paleo-Pacific plate. Moreover, the factors controlling the Sn mineralization potential of granitic magma were evaluated using zircon trace elements and petrogeochemical data. These findings indicate that the Yuling granite crystallized from higher temperature, lower water content, F-rich, and highly-fractionated reduced granitic magma. Such granitic magma is conducive to generating Sn-rich fluids and has high Sn mineralization potential.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.