Fang Ting Gu , Jun Hui Li , Zi Chen Zhao , Yan Yu Zhu , Lin Xi Huang , Jian Yong Wu
{"title":"Metabolic outcomes of Cordyceps fungus and Goji plant polysaccharides during in vitro human fecal fermentation","authors":"Fang Ting Gu , Jun Hui Li , Zi Chen Zhao , Yan Yu Zhu , Lin Xi Huang , Jian Yong Wu","doi":"10.1016/j.carbpol.2024.123019","DOIUrl":null,"url":null,"abstract":"<div><div>This study was to assess the digestion and colonic fermentation of two bioactive polysaccharides, EPS-LM and LBPS, and the subsequent influences on human gut microbiota through simulated gastrointestinal systems. EPS-LM, an exopolysaccharide isolated from mycelial culture of a medicinal fungus <em>Cordyceps sinensis</em> Cs-HK1, was characterized as a heteropolysaccharide consisting of Man(108):Gal(52.7):Glc(29.2) (molar ratio) with an average molecular weight (MW) 5.513 × 10<sup>6</sup>. LBPS was isolated from a well-known medicinal plant (<em>Lycium barbarum</em> L.) which was also characterized as a heteropolysaccharide (1.236 × 10<sup>5</sup> MW). Both polysaccharides were highly resistant to saliva, gastric and small-intestine digestion with negligible MW reduction and release of reducing sugars but were quickly degraded to lower MW during <em>in vitro</em> human fecal fermentation. They were consumed as a carbon source by the gut bacteria to produce short-chain fatty acids (SCFAs). In comparison, the carbohydrate content of EPS-LM was more completely consumed than LBPS and there were also notable differences in consumption of specific monosaccharides and production of specific SCFAs, propionic and butyric acid, and relative abundance of gut bacterial populations between EPS-LM and LBPS group. The results suggest that metabolic outcomes and modulating effects of EPS-LM and LBPS on the gut microbiota are highly dependent on their molecular composition.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 123019"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012451","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study was to assess the digestion and colonic fermentation of two bioactive polysaccharides, EPS-LM and LBPS, and the subsequent influences on human gut microbiota through simulated gastrointestinal systems. EPS-LM, an exopolysaccharide isolated from mycelial culture of a medicinal fungus Cordyceps sinensis Cs-HK1, was characterized as a heteropolysaccharide consisting of Man(108):Gal(52.7):Glc(29.2) (molar ratio) with an average molecular weight (MW) 5.513 × 106. LBPS was isolated from a well-known medicinal plant (Lycium barbarum L.) which was also characterized as a heteropolysaccharide (1.236 × 105 MW). Both polysaccharides were highly resistant to saliva, gastric and small-intestine digestion with negligible MW reduction and release of reducing sugars but were quickly degraded to lower MW during in vitro human fecal fermentation. They were consumed as a carbon source by the gut bacteria to produce short-chain fatty acids (SCFAs). In comparison, the carbohydrate content of EPS-LM was more completely consumed than LBPS and there were also notable differences in consumption of specific monosaccharides and production of specific SCFAs, propionic and butyric acid, and relative abundance of gut bacterial populations between EPS-LM and LBPS group. The results suggest that metabolic outcomes and modulating effects of EPS-LM and LBPS on the gut microbiota are highly dependent on their molecular composition.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.