Highly efficient dye adsorption by hierarchical porous SA/PVA/ZIF-8 composite microgels prepared via microfluidics

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Nann Aye Mya Mya Phu , Eunsol Wi , Ganghoon Jeong , Hyungwoo Kim , Nayan Ranjan Singha , Mincheol Chang
{"title":"Highly efficient dye adsorption by hierarchical porous SA/PVA/ZIF-8 composite microgels prepared via microfluidics","authors":"Nann Aye Mya Mya Phu ,&nbsp;Eunsol Wi ,&nbsp;Ganghoon Jeong ,&nbsp;Hyungwoo Kim ,&nbsp;Nayan Ranjan Singha ,&nbsp;Mincheol Chang","doi":"10.1016/j.carbpol.2024.123016","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical porous composite microgels (SPZ microgels) were synthesized using microfluidic technology, composed of sodium alginate (SA), polyvinyl alcohol (PVA), and zeolitic imidazolate framework-8 (ZIF-8). The incorporation of ZIF-8 nanoparticles led to the formation of significant porous structures within the microgels, greatly enhancing their dye adsorption performance. Additionally, the diffusion of acetone during the crosslinking reaction resulted in sodium chloride crystal formation, creating a hierarchical porous structure with larger internal porous channels and smaller external channels. These SPZ microgels exhibited remarkable adsorption capabilities for both anionic and cationic dyes. The SPZ microgels showed exceptional adsorption capacities of 180 mg/g for methyl orange (MO) and 210 mg/g for methylene blue (MeB), far exceeding the performance of control microgels without the hierarchical porous structure (20 mg/g for MO and 150 mg/g for MeB). The hierarchical porous structure provided a larger surface area and facilitated improved diffusion and faster adsorption kinetics, contributing to the superior adsorption performance of the SPZ microgels. Kinetic studies revealed that MeB adsorption followed pseudo-second-order kinetics, while MO adsorption followed pseudo-first-order kinetics. Isotherm studies established that the Langmuir model accurately described MeB adsorption, indicating monolayer adsorption, while the Freundlich model effectively characterized MO adsorption, indicating multilayer interactions.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 123016"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012426","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Hierarchical porous composite microgels (SPZ microgels) were synthesized using microfluidic technology, composed of sodium alginate (SA), polyvinyl alcohol (PVA), and zeolitic imidazolate framework-8 (ZIF-8). The incorporation of ZIF-8 nanoparticles led to the formation of significant porous structures within the microgels, greatly enhancing their dye adsorption performance. Additionally, the diffusion of acetone during the crosslinking reaction resulted in sodium chloride crystal formation, creating a hierarchical porous structure with larger internal porous channels and smaller external channels. These SPZ microgels exhibited remarkable adsorption capabilities for both anionic and cationic dyes. The SPZ microgels showed exceptional adsorption capacities of 180 mg/g for methyl orange (MO) and 210 mg/g for methylene blue (MeB), far exceeding the performance of control microgels without the hierarchical porous structure (20 mg/g for MO and 150 mg/g for MeB). The hierarchical porous structure provided a larger surface area and facilitated improved diffusion and faster adsorption kinetics, contributing to the superior adsorption performance of the SPZ microgels. Kinetic studies revealed that MeB adsorption followed pseudo-second-order kinetics, while MO adsorption followed pseudo-first-order kinetics. Isotherm studies established that the Langmuir model accurately described MeB adsorption, indicating monolayer adsorption, while the Freundlich model effectively characterized MO adsorption, indicating multilayer interactions.

Abstract Image

通过微流控技术制备的分层多孔 SA/PVA/ZIF-8 复合微凝胶对染料的高效吸附
利用微流体技术合成了由海藻酸钠(SA)、聚乙烯醇(PVA)和沸石咪唑啉框架-8(ZIF-8)组成的分层多孔复合微凝胶(SPZ微凝胶)。ZIF-8 纳米粒子的加入使微凝胶形成了明显的多孔结构,大大提高了染料吸附性能。此外,在交联反应过程中丙酮的扩散导致氯化钠晶体的形成,形成了内部孔道较大、外部孔道较小的分层多孔结构。这些 SPZ 微凝胶对阴离子和阳离子染料都具有出色的吸附能力。SPZ 微凝胶对甲基橙(MO)和亚甲基蓝(MeB)的吸附能力分别达到了 180 毫克/克和 210 毫克/克,远远超过了未采用分层多孔结构的对照微凝胶(MO 为 20 毫克/克,MeB 为 150 毫克/克)。分层多孔结构提供了更大的表面积,促进了扩散和更快的吸附动力学,从而使 SPZ 微凝胶具有更优越的吸附性能。动力学研究表明,MeB 吸附遵循伪二阶动力学,而 MO 吸附遵循伪一阶动力学。等温线研究表明,Langmuir 模型准确地描述了 MeB 的吸附,表明其为单层吸附,而 Freundlich 模型则有效地描述了 MO 的吸附,表明其为多层相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信