Youssef Miyah , Noureddine El Messaoudi , Mohammed Benjelloun , Jordana Georgin , Dison Stracke Pfingsten Franco , Mohamed El-habacha , Oumaima Ait Ali , Yaser Acikbas
{"title":"A comprehensive review of β-cyclodextrin polymer nanocomposites exploration for heavy metal removal from wastewater","authors":"Youssef Miyah , Noureddine El Messaoudi , Mohammed Benjelloun , Jordana Georgin , Dison Stracke Pfingsten Franco , Mohamed El-habacha , Oumaima Ait Ali , Yaser Acikbas","doi":"10.1016/j.carbpol.2024.122981","DOIUrl":null,"url":null,"abstract":"<div><div>This review focuses on the application of β-cyclodextrin (β-CD) polymer nanocomposites (NCs) in the heavy metals (HMs) removal from contaminated water sources. This manuscript's originality consists of an in-depth analysis of recent advances in using β-cyclodextrin nanocomposites (β-CD-NCs) to remove HMs from wastewater, highlighting literature gaps, innovations, and challenges in this field, suggesting perspectives on existing theories, and outlining implications for future research directions. Combining nanoparticles with the β-CD polymer yields stable, reusable β-CD-NCs that are effective and efficient in HM adsorption. The article reviews the various techniques for synthesizing β-CD-NCs and their structural characterization. It also includes processing and functionalization strategies to optimize binding capacity and selectivity for specific HMs. The paper reviews mechanisms underpinning HM adsorption through complexation, ion exchange, and electrostatic interactions. It also reviews how adsorption efficiency is affected by different environmental conditions, such as variations in pH, temperature, and competing ions. This will enable case studies on the applications of β-CD-NCs, particularly for addressing global water pollution. Finally, the current limitations and future perspectives are considered, focusing on the further research needed to optimize these materials for sustainable and cost-effective HM removal on a large scale.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"350 ","pages":"Article 122981"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This review focuses on the application of β-cyclodextrin (β-CD) polymer nanocomposites (NCs) in the heavy metals (HMs) removal from contaminated water sources. This manuscript's originality consists of an in-depth analysis of recent advances in using β-cyclodextrin nanocomposites (β-CD-NCs) to remove HMs from wastewater, highlighting literature gaps, innovations, and challenges in this field, suggesting perspectives on existing theories, and outlining implications for future research directions. Combining nanoparticles with the β-CD polymer yields stable, reusable β-CD-NCs that are effective and efficient in HM adsorption. The article reviews the various techniques for synthesizing β-CD-NCs and their structural characterization. It also includes processing and functionalization strategies to optimize binding capacity and selectivity for specific HMs. The paper reviews mechanisms underpinning HM adsorption through complexation, ion exchange, and electrostatic interactions. It also reviews how adsorption efficiency is affected by different environmental conditions, such as variations in pH, temperature, and competing ions. This will enable case studies on the applications of β-CD-NCs, particularly for addressing global water pollution. Finally, the current limitations and future perspectives are considered, focusing on the further research needed to optimize these materials for sustainable and cost-effective HM removal on a large scale.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.