Saurabh Khuje, Long Zhu, Jian Yu* and Shenqiang Ren*,
{"title":"Copper-Coated E-Glass Fiber-Based Strain Sensors for High Temperatures","authors":"Saurabh Khuje, Long Zhu, Jian Yu* and Shenqiang Ren*, ","doi":"10.1021/acsaelm.4c0151010.1021/acsaelm.4c01510","DOIUrl":null,"url":null,"abstract":"<p >Flexible conducting ceramics offer exciting potential for advanced high-temperature electronic and thermal management applications, but challenges remain in achieving both flexibility and high electrical conductivity without compromising the material’s structural integrity. In this study, we present a flexible metallized E-glass fiber network formed via mixing copper molecular ink with ceramic fibers (copper-coated aluminum borosilicate) to enable strain sensing under harsh conditions, exhibiting a gauge factor of 1.34 and a response time of 100 ms at room temperature. A silicon carbide preceramic precursor was further coated to achieve a synergistic combination of high-temperature oxidation resistance. The flexible sensor functions effectively at temperatures of up to 400 °C, making it suitable for high-temperature environments, with a gauge factor of 0.181. Additionally, incorporating a printed dipole antenna allows for a self-powered system that can wirelessly respond to real-time applied strains.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8226–8231 8226–8231"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01510","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible conducting ceramics offer exciting potential for advanced high-temperature electronic and thermal management applications, but challenges remain in achieving both flexibility and high electrical conductivity without compromising the material’s structural integrity. In this study, we present a flexible metallized E-glass fiber network formed via mixing copper molecular ink with ceramic fibers (copper-coated aluminum borosilicate) to enable strain sensing under harsh conditions, exhibiting a gauge factor of 1.34 and a response time of 100 ms at room temperature. A silicon carbide preceramic precursor was further coated to achieve a synergistic combination of high-temperature oxidation resistance. The flexible sensor functions effectively at temperatures of up to 400 °C, making it suitable for high-temperature environments, with a gauge factor of 0.181. Additionally, incorporating a printed dipole antenna allows for a self-powered system that can wirelessly respond to real-time applied strains.
柔性导电陶瓷为先进的高温电子和热管理应用提供了令人兴奋的潜力,但在实现柔性和高导电性的同时又不影响材料的结构完整性方面仍然存在挑战。在本研究中,我们介绍了一种通过将铜分子墨水与陶瓷纤维(铜涂层硼硅酸铝)混合而形成的柔性金属化 E 玻璃纤维网络,该网络可在恶劣条件下实现应变传感,在室温下的测量系数为 1.34,响应时间为 100 毫秒。为了实现高温抗氧化性的协同组合,还进一步涂覆了碳化硅陶瓷前驱体。这种柔性传感器可在高达 400 °C 的温度下有效工作,适用于高温环境,测量系数为 0.181。此外,结合印刷偶极子天线可实现自供电系统,以无线方式对实时施加的应变做出响应。
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico