A fluorinated zirconium-based metal-organic framework as a platform for the capture and removal of perfluorinated pollutants from air and water

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Daniel Hedbom, Philipp Gaiser, Tyran Günther, Ocean Cheung, Maria Strømme, Michelle Åhlén, Martin Sjödin
{"title":"A fluorinated zirconium-based metal-organic framework as a platform for the capture and removal of perfluorinated pollutants from air and water","authors":"Daniel Hedbom, Philipp Gaiser, Tyran Günther, Ocean Cheung, Maria Strømme, Michelle Åhlén, Martin Sjödin","doi":"10.1039/d4ta06167e","DOIUrl":null,"url":null,"abstract":"A series of zirconium-based MOFs with acclaimed stability was prepared and their ability to adsorb polyfluorinated pollutants was compared. A novel fluorinated UiO-67 analogue, UiO-67-F2, was synthesised alongside three previously reported materials: UiO-67-NH2, UiO-68-(CF3)2 and UiO-67. The structures were established and confirmed by powder X-Ray diffraction. UiO-67-NH2, UiO-68(CF3)2 and UiO-67-F2 were examined as sorbents for the perfluorinated gas, sulphur hexafluoride (SF<small><sub>6</sub></small>) from the gaseous phase. The SF<small><sub>6</sub></small> uptake of UiO-67-NH2 and UiO-67-F2 at 100 kPa, 293 K, was high (5.54 and 5.24 mmol g <small><sup>-1</sup></small> respectively). UiO-67-F2 exhibited a remarkable perfluorinated octanoic acid (PFOA) uptake of 928 mg<small><sub>PFOA</sub></small> g <small><sup>-1</sup></small><small><sub>MOF</sub></small> in an aqueous solution, which far exceeded that of unmodified UiO-67 (872 mg<small><sub>PFOA</sub></small> g <small><sup>-1</sup></small><small><sub>MOF</sub></small> at 1 000 mg<small><sub>PFOA</sub></small> L <small><sup>-1</sup></small><small><sub>Water</sub></small> PFOA). This study has identified strengths and potential applications of the novel UiO-67-F2 and the impact of fluorine functionalization. The study also offers insight into the structure-property relations of UiO-based MOFs for their use as low-pressure SF6 storage materials and PFAS sorbents intended for water purification under ambient conditions.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"8 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06167e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of zirconium-based MOFs with acclaimed stability was prepared and their ability to adsorb polyfluorinated pollutants was compared. A novel fluorinated UiO-67 analogue, UiO-67-F2, was synthesised alongside three previously reported materials: UiO-67-NH2, UiO-68-(CF3)2 and UiO-67. The structures were established and confirmed by powder X-Ray diffraction. UiO-67-NH2, UiO-68(CF3)2 and UiO-67-F2 were examined as sorbents for the perfluorinated gas, sulphur hexafluoride (SF6) from the gaseous phase. The SF6 uptake of UiO-67-NH2 and UiO-67-F2 at 100 kPa, 293 K, was high (5.54 and 5.24 mmol g -1 respectively). UiO-67-F2 exhibited a remarkable perfluorinated octanoic acid (PFOA) uptake of 928 mgPFOA g -1MOF in an aqueous solution, which far exceeded that of unmodified UiO-67 (872 mgPFOA g -1MOF at 1 000 mgPFOA L -1Water PFOA). This study has identified strengths and potential applications of the novel UiO-67-F2 and the impact of fluorine functionalization. The study also offers insight into the structure-property relations of UiO-based MOFs for their use as low-pressure SF6 storage materials and PFAS sorbents intended for water purification under ambient conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信