{"title":"Synthesizing ordered polar patterns in nonpolar SrTiO 3 nanofilms via wrinkle-induced flexoelectricity","authors":"Hongxing Shang, Tang Sheng, Huiting Dong, Yihan Wu, Qianqian Ma, Xin Zhang, Lingtong Lv, Hongyu Cao, Feng Deng, Xu Liang, Shuling Hu, Shengping Shen","doi":"10.1073/pnas.2414500121","DOIUrl":null,"url":null,"abstract":"Ordered polar structures in oxide nanofilms play a pivotal role in the development of nanoelectronic applications. Hitherto, ordered polar structures have been restricted to a limited number of ferroelectric materials, and there is no effective scheme to induce and manipulate ordered polar patterns in centrosymmetric nonpolar nanofilms due to the absence of spontaneous symmetry breaking. Here, we circumvent these limitations by utilizing the wrinkle-induced strain gradient modulation associated with flexoelectricity as a general means of inducing and manipulating ordered polar patterns in nonpolar nanofilms. Leveraging the surface instability caused by strain mismatch between oxide nanofilms and pre-strained compliant substrate, we successfully fabricate striped SrTiO <jats:sub>3</jats:sub> wrinkles, where well-ordered strain gradients and corresponding periodic polar patterns are readily achieved. Through in-situ piezoresponse force microscopy experiments, we show that the generated polar patterns can be manipulated by varying strain boundaries. Furthermore, the atomistic resolution images and first-principles calculations reveal that such wrinkle-induced ordered polar patterns primarily emerge from the flexoelectric coupling between the local polarization and strain gradients. These findings provide implications for manipulating polar structures by strain gradient and flexoelectric engineering, which in turn enable the realization of nontrivial polar structures in a broader range of materials.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"113 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414500121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ordered polar structures in oxide nanofilms play a pivotal role in the development of nanoelectronic applications. Hitherto, ordered polar structures have been restricted to a limited number of ferroelectric materials, and there is no effective scheme to induce and manipulate ordered polar patterns in centrosymmetric nonpolar nanofilms due to the absence of spontaneous symmetry breaking. Here, we circumvent these limitations by utilizing the wrinkle-induced strain gradient modulation associated with flexoelectricity as a general means of inducing and manipulating ordered polar patterns in nonpolar nanofilms. Leveraging the surface instability caused by strain mismatch between oxide nanofilms and pre-strained compliant substrate, we successfully fabricate striped SrTiO 3 wrinkles, where well-ordered strain gradients and corresponding periodic polar patterns are readily achieved. Through in-situ piezoresponse force microscopy experiments, we show that the generated polar patterns can be manipulated by varying strain boundaries. Furthermore, the atomistic resolution images and first-principles calculations reveal that such wrinkle-induced ordered polar patterns primarily emerge from the flexoelectric coupling between the local polarization and strain gradients. These findings provide implications for manipulating polar structures by strain gradient and flexoelectric engineering, which in turn enable the realization of nontrivial polar structures in a broader range of materials.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.