{"title":"Predicting poor performance on cognitive tests among older adults using wearable device data and machine learning: a feasibility study.","authors":"Collin Sakal, Tingyou Li, Juan Li, Xinyue Li","doi":"10.1038/s41514-024-00177-x","DOIUrl":null,"url":null,"abstract":"<p><p>Timely implementation of interventions to slow cognitive decline among older adults requires accurate monitoring to detect changes in cognitive function. Factors known to be associated with cognition that can be gathered from accelerometers, user interfaces, and other sensors within wearable devices could be used to train machine learning models and develop wearable-based cognitive monitoring systems. Using data from over 2400 older adults in the National Health and Nutrition Examination Survey (NHANES) we developed prediction models to differentiate older adults with normal cognition from those with poor cognition based on outcomes from three cognitive tests measuring different domains of cognitive function. During repeated cross-validation CatBoost, XGBoost, and Random Forest models performed best when predicting poor cognition based on tests measuring processing speed, working memory, and attention (median AUCs ≥0.82) compared to immediate and delayed recall (median AUCs ≥0.72) and categorical verbal fluency (median AUC ≥ 0.68). Activity and sleep parameters were also more strongly associated with poor cognition based on tests assessing processing speed, working memory, and attention compared to other cognitive subdomains. Our work provides proof of concept that data collatable through wearable devices such as age, education, sleep parameters, activity summaries, and light exposure metrics could be used to differentiate between older adults with normal versus poor cognition. We further identified metrics that could be targets in future causal studies seeking to better understand how sleep and activity parameters influence cognitive function among older adults.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"56"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11589133/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-024-00177-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely implementation of interventions to slow cognitive decline among older adults requires accurate monitoring to detect changes in cognitive function. Factors known to be associated with cognition that can be gathered from accelerometers, user interfaces, and other sensors within wearable devices could be used to train machine learning models and develop wearable-based cognitive monitoring systems. Using data from over 2400 older adults in the National Health and Nutrition Examination Survey (NHANES) we developed prediction models to differentiate older adults with normal cognition from those with poor cognition based on outcomes from three cognitive tests measuring different domains of cognitive function. During repeated cross-validation CatBoost, XGBoost, and Random Forest models performed best when predicting poor cognition based on tests measuring processing speed, working memory, and attention (median AUCs ≥0.82) compared to immediate and delayed recall (median AUCs ≥0.72) and categorical verbal fluency (median AUC ≥ 0.68). Activity and sleep parameters were also more strongly associated with poor cognition based on tests assessing processing speed, working memory, and attention compared to other cognitive subdomains. Our work provides proof of concept that data collatable through wearable devices such as age, education, sleep parameters, activity summaries, and light exposure metrics could be used to differentiate between older adults with normal versus poor cognition. We further identified metrics that could be targets in future causal studies seeking to better understand how sleep and activity parameters influence cognitive function among older adults.