Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity.

Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna O Orlova
{"title":"Doxorubicin-loaded core@shell cobalt ferrite-barium titanate magnetoelectric nanofibers for improved anticancer activity.","authors":"Khuram Shahzad, Muhammad Ali Abbasi, Muhammad Hassan Rafe, Anna Pestereva, Faheem Ullah, Muhammad Zaman, Muhammad Irfan, Muhammad Afzal, Anna O Orlova","doi":"10.1088/1748-605X/ad971e","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers, with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric nanofibers based on magnetoelectric core-shell nanostructures. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) analysis confirmed the successful loading of nanostructures on polymeric nanofiber, the core-shell morphology and magnetoelectric phase of cobalt ferrite@barium titanate CFO@BTO, respectively. To verify the drug attachment, the optimization of drug release in an applied external magnetic field, and the time required for control drug release, UV-Vis spectroscopy was used. The effectiveness of magnetic field-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric nanofibers (MENFs) within 30 minutes under a magnetic field of 4mT. In vitro cytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2±0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad971e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional drug delivery systems often suffer from non-specific distribution and limited therapeutic efficacy, leading to significant side effects. To address these challenges, we developed magnetoelectric, cobalt ferrite@barium titanate (CFO@BTO) nanofibers, with a core-shell structure for targeted anticancer drug delivery. The electrospinning method was employed to synthesize polymeric nanofibers based on magnetoelectric core-shell nanostructures. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM) analysis confirmed the successful loading of nanostructures on polymeric nanofiber, the core-shell morphology and magnetoelectric phase of cobalt ferrite@barium titanate CFO@BTO, respectively. To verify the drug attachment, the optimization of drug release in an applied external magnetic field, and the time required for control drug release, UV-Vis spectroscopy was used. The effectiveness of magnetic field-assisted controlled drug release was demonstrated by achieving a 95 ± 1.03% drug release from magnetoelectric nanofibers (MENFs) within 30 minutes under a magnetic field of 4mT. In vitro cytotoxicity assay on human skin cancer (SK-MEL-28) cell lines exhibited a maximum 90 ± 2% cytotoxicity with 2±0.03 cm of drug loaded MENFs. Furthermore, the Hemolysis assay was carried out to affirm the biocompatibility and non-toxicity of drug loaded MENFs, which is suitable for anticancer therapy.

用于提高抗癌活性的负载多柔比星的核@壳钴铁氧体-钛酸钡磁电纳米纤维。
传统的给药系统往往存在非特异性分布和疗效有限的问题,从而导致严重的副作用。为了应对这些挑战,我们开发了具有核壳结构的磁电钴铁氧体@钛酸钡(CFO@BTO)纳米纤维,用于抗癌药物的靶向递送。采用电纺丝方法合成了基于磁电核壳纳米结构的聚合物纳米纤维。扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和振动样品磁力计(VSM)分析分别证实了纳米结构在聚合物纳米纤维上的成功负载、钴铁氧体@钛酸钡CFO@BTO的核壳形貌和磁电相。为了验证药物的附着情况、外加磁场中药物释放的优化情况以及控制药物释放所需的时间,使用了紫外可见光谱。在 4mT 的磁场下,磁电纳米纤维在 30 分钟内实现了 95 ± 1.03% 的药物释放,证明了磁场辅助药物控释的有效性。对人类皮肤癌(SK-MEL-28)细胞系进行的体外细胞毒性试验表明,2±0.03 cm 的磁电纳米纤维负载药物后,细胞毒性最高可达 90 ± 2%。此外,还进行了溶血试验,以确定载药 MENFs 的生物相容性和无毒性,适用于抗癌治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信