{"title":"An aligned pattern sponge based on gelatin for rapid hemostasis.","authors":"Dayong Cao, Yimin Chen, Yulin Man, Zhaohong Chen","doi":"10.1088/1748-605X/ad9720","DOIUrl":null,"url":null,"abstract":"<p><p>Post-traumatic hemorrhage is a leading cause of morbidity and mortality. However, most current hemostatic materials focus on incorporating nutritional components, with limited research addressing the impact of the material's structure on hemostasis. In this study, we developed cytocompatible and hemocompatible three-dimensional gelatin sponges with a patterned and aligned structure, designed for rapid hemostasis. The sponges were characterized by light microscope photography and scanning electron microscopy (SEM). Pattern sponges with gelatin (P-Gelatin) exhibited aligned structures on their surfaces and the inner structure. In terms of biocompatibility, MTT assay, and hemolysis experiment showed that P-Gelatin had good cytocompatibility and hemocompatibility.<i>In vivo</i>blood coagulation and<i>in vivo</i>hemostasis, P-Gelatin sponges, with their aligned structure, exhibit rapid adsorption of red blood cells and platelets compared to non-patterned gelatin counterparts. This work introduces a safe and convenient patterned sponge for rapid hemostasis, especially highlighting a concept where a patterned structure can enhance the effectiveness of blood clotting, which is particularly relevant for tissue engineering.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad9720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Post-traumatic hemorrhage is a leading cause of morbidity and mortality. However, most current hemostatic materials focus on incorporating nutritional components, with limited research addressing the impact of the material's structure on hemostasis. In this study, we developed cytocompatible and hemocompatible three-dimensional gelatin sponges with a patterned and aligned structure, designed for rapid hemostasis. The sponges were characterized by light microscope photography and scanning electron microscopy (SEM). Pattern sponges with gelatin (P-Gelatin) exhibited aligned structures on their surfaces and the inner structure. In terms of biocompatibility, MTT assay, and hemolysis experiment showed that P-Gelatin had good cytocompatibility and hemocompatibility.In vivoblood coagulation andin vivohemostasis, P-Gelatin sponges, with their aligned structure, exhibit rapid adsorption of red blood cells and platelets compared to non-patterned gelatin counterparts. This work introduces a safe and convenient patterned sponge for rapid hemostasis, especially highlighting a concept where a patterned structure can enhance the effectiveness of blood clotting, which is particularly relevant for tissue engineering.