{"title":"A Semiparametric Two-Sample Density Ratio Model With a Change Point.","authors":"Jiahui Feng, Kin Yau Wong, Chun Yin Lee","doi":"10.1002/bimj.202300214","DOIUrl":null,"url":null,"abstract":"<p><p>The logistic regression model for a binary outcome with a continuous covariate can be expressed equivalently as a two-sample density ratio model for the covariate. Utilizing this equivalence, we study a change-point logistic regression model within the corresponding density ratio modeling framework. We investigate estimation and inference methods for the density ratio model and develop maximal score-type tests to detect the presence of a change point. In contrast to existing work, the density ratio modeling framework facilitates the development of a natural Kolmogorov-Smirnov type test to assess the validity of the logistic model assumptions. A simulation study is conducted to evaluate the finite-sample performance of the proposed tests and estimation methods. We illustrate the proposed approach using a mother-to-child HIV-1 transmission data set and an oral cancer data set.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":"e202300214"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bimj.202300214","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The logistic regression model for a binary outcome with a continuous covariate can be expressed equivalently as a two-sample density ratio model for the covariate. Utilizing this equivalence, we study a change-point logistic regression model within the corresponding density ratio modeling framework. We investigate estimation and inference methods for the density ratio model and develop maximal score-type tests to detect the presence of a change point. In contrast to existing work, the density ratio modeling framework facilitates the development of a natural Kolmogorov-Smirnov type test to assess the validity of the logistic model assumptions. A simulation study is conducted to evaluate the finite-sample performance of the proposed tests and estimation methods. We illustrate the proposed approach using a mother-to-child HIV-1 transmission data set and an oral cancer data set.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.