Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis.

Jiaxin Zhang, Horst Wallrabe, Karsten Siller, Brian Mbogo, Thomas Cassidy, Shagufta Rehman Alam, Ammasi Periasamy
{"title":"Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis.","authors":"Jiaxin Zhang, Horst Wallrabe, Karsten Siller, Brian Mbogo, Thomas Cassidy, Shagufta Rehman Alam, Ammasi Periasamy","doi":"10.1002/jbio.202400426","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a<sub>2</sub>%/FAD-a<sub>1</sub>%), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400426"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a2%/FAD-a1%), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.

利用双光子荧光寿命成像显微镜和机器学习分析测量癌细胞的代谢变化
利用双光子(2P)荧光寿命成像显微镜(FLIM)跟踪活体癌细胞中自发荧光辅酶 NAD(P)H 和 FAD 在药物治疗下的细胞代谢情况。在加入多柔比星前后的成像时间过程中,将 800 纳米同时激发两种辅酶与传统的 740/890 纳米和另一种 740/800 纳米顺序激发进行了比较。通过三种分析方法比较了单细胞分辨率下氧化还原状态的变化:我们最近推出的荧光寿命氧化还原比率(FLIRR:NAD(P)H-a2%/FAD-a1%)、使用主成分(PCA)和非线性多特征自动编码器(AE)分析的机器学习(ML)算法。虽然这三种算法都得出了类似的生物学结论(早期药物反应),但从统计学角度来看,ML 模型提供了最可靠的显著结果。在上述分析中,单 800 纳米激发两种辅酶进行代谢成像的优势得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信