Yonghwan Shin, Sungmin Kim, Tae-Ik Choi, Cheol-Hee Kim, Woojin An
{"title":"VprBP regulates osteoclast differentiation via an epigenetic mechanism involving histone H2A phosphorylation.","authors":"Yonghwan Shin, Sungmin Kim, Tae-Ik Choi, Cheol-Hee Kim, Woojin An","doi":"10.1186/s13072-024-00561-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone remodeling is a continuous and balanced process which relies on the dynamic equilibrium between osteoclastic bone resorption and osteoblastic bone formation. During osteoclast differentiation, pro-osteoclastogenic and anti-osteoclastogenic genes are selectively targeted by positive and negative transcription regulators, respectively. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in driving epigenetic gene silencing and oncogenic transformation. However, nothing is currently known about a possible involvement of VprBP in signaling pathways that regulate other cellular processes.</p><p><strong>Results: </strong>We demonstrate that VprBP stimulates RANKL-induced differentiation of osteoclast precursor cells (OCPs) into mature osteoclasts by suppressing the expression of anti-osteoclastogenic genes through phosphorylation of threonine 120 on histone H2A (H2AT120p). H2AT120p is critical for VprBP function, because abrogating VprBP kinase activity toward H2AT120 transcriptionally reactivates anti-osteoclastogenic genes and significantly attenuates osteoclast differentiation. Consistent with this notion, our in vivo studies established the importance of VprBP-mediated H2AT120p in low bone mass phenotypes and osteoporosis caused by overactive osteoclasts.</p><p><strong>Conclusions: </strong>Our data reveal a previously unrecognized function of VprBP in supporting RANKL-induced osteoclast differentiation and the molecular mechanism underlying its action as a negative regulator of anti-osteoclastogenic genes.</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"17 1","pages":"35"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-024-00561-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bone remodeling is a continuous and balanced process which relies on the dynamic equilibrium between osteoclastic bone resorption and osteoblastic bone formation. During osteoclast differentiation, pro-osteoclastogenic and anti-osteoclastogenic genes are selectively targeted by positive and negative transcription regulators, respectively. VprBP, also known as DCAF1, is a recently identified kinase and plays an important role in driving epigenetic gene silencing and oncogenic transformation. However, nothing is currently known about a possible involvement of VprBP in signaling pathways that regulate other cellular processes.
Results: We demonstrate that VprBP stimulates RANKL-induced differentiation of osteoclast precursor cells (OCPs) into mature osteoclasts by suppressing the expression of anti-osteoclastogenic genes through phosphorylation of threonine 120 on histone H2A (H2AT120p). H2AT120p is critical for VprBP function, because abrogating VprBP kinase activity toward H2AT120 transcriptionally reactivates anti-osteoclastogenic genes and significantly attenuates osteoclast differentiation. Consistent with this notion, our in vivo studies established the importance of VprBP-mediated H2AT120p in low bone mass phenotypes and osteoporosis caused by overactive osteoclasts.
Conclusions: Our data reveal a previously unrecognized function of VprBP in supporting RANKL-induced osteoclast differentiation and the molecular mechanism underlying its action as a negative regulator of anti-osteoclastogenic genes.
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.