Phosphorus addition severely exacerbates the inhibitory effect of the increased diurnal temperature range on the invasive plant Solidago canadensis.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Miaomiao Cui, Bin Yang, Jie Dong, Xue Fan, Haochen Yu, Guangqian Ren, Zhaoqi Zhu, Daolin Du
{"title":"Phosphorus addition severely exacerbates the inhibitory effect of the increased diurnal temperature range on the invasive plant Solidago canadensis.","authors":"Miaomiao Cui, Bin Yang, Jie Dong, Xue Fan, Haochen Yu, Guangqian Ren, Zhaoqi Zhu, Daolin Du","doi":"10.1111/ppl.14634","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates how variations in diurnal temperature and phosphorus concentration affect the growth of native Artemisia argyi and invasive Solidago canadensis under intraspecific and interspecific competition. We conducted factorial experiments to assess the impacts of warming, including an increased diurnal temperature range (DTRinc), a symmetric increase in diurnal temperature range (DTRsys), a decreased diurnal temperature range (DTRdec) and phosphorus application (5 g and 10 g P m<sup>2</sup> yr<sup>-1</sup>) on both intra- and inter-specific competition among plants. The results indicated that (1) the DTRsys for A. argyi was -48.95% and for S. canadensis, it was -31.49% and overall had a more pronounced inhibitory effect on the biomass of both plant species than other warming treatments after comprehensive analysis. (2) Under intraspecific competition, phosphorus promoted the growth of A. argyi and S. canadensis on plant height, root length, and biomass. The biomass of A. argyi (22.75% and 53.61%) and S. canadensis (11.49% and 27.76%) increased under low and high phosphorus, respectively. Under interspecific competition, the plant height and biomass of the two plant species showed different response trends to phosphorus. Still, the competitiveness of S. canadensis increased compared with the untreated group. (3) Plant adaptability in biomass was more sensitive to warming than phosphorus treatments, and warming reduced the promoting effect of phosphorus, indicating that warming and phosphorus have interactive effects on plants. Phosphorus exacerbated the inhibitory effect of DTRinc on the biomass of S. canadensis, which was more pronounced than other warming methods. The different responses of the two plants mention the species to warming and phosphorus treatments under different competition scenarios reflect the differences in their ecological strategies for adapting to the environment.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14634"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14634","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates how variations in diurnal temperature and phosphorus concentration affect the growth of native Artemisia argyi and invasive Solidago canadensis under intraspecific and interspecific competition. We conducted factorial experiments to assess the impacts of warming, including an increased diurnal temperature range (DTRinc), a symmetric increase in diurnal temperature range (DTRsys), a decreased diurnal temperature range (DTRdec) and phosphorus application (5 g and 10 g P m2 yr-1) on both intra- and inter-specific competition among plants. The results indicated that (1) the DTRsys for A. argyi was -48.95% and for S. canadensis, it was -31.49% and overall had a more pronounced inhibitory effect on the biomass of both plant species than other warming treatments after comprehensive analysis. (2) Under intraspecific competition, phosphorus promoted the growth of A. argyi and S. canadensis on plant height, root length, and biomass. The biomass of A. argyi (22.75% and 53.61%) and S. canadensis (11.49% and 27.76%) increased under low and high phosphorus, respectively. Under interspecific competition, the plant height and biomass of the two plant species showed different response trends to phosphorus. Still, the competitiveness of S. canadensis increased compared with the untreated group. (3) Plant adaptability in biomass was more sensitive to warming than phosphorus treatments, and warming reduced the promoting effect of phosphorus, indicating that warming and phosphorus have interactive effects on plants. Phosphorus exacerbated the inhibitory effect of DTRinc on the biomass of S. canadensis, which was more pronounced than other warming methods. The different responses of the two plants mention the species to warming and phosphorus treatments under different competition scenarios reflect the differences in their ecological strategies for adapting to the environment.

磷的添加严重加剧了昼夜温差增大对入侵植物实心草(Solidago canadensis)的抑制作用。
本研究调查了昼夜温度和磷浓度的变化如何在种内和种间竞争下影响本地蒿属植物和外来入侵植物Solidago canadensis的生长。我们进行了因子实验,以评估升温(包括昼夜温差增大(DTRinc)、昼夜温差对称增大(DTRsys)、昼夜温差减小(DTRdec))和施磷(5 g 和 10 g P m2 yr-1)对植物种内和种间竞争的影响。结果表明:(1) 综合分析后发现,DTRsys 对 A. argyi 的抑制作用为-48.95%,对 S. canadensis 的抑制作用为-31.49%,总体上对两种植物生物量的抑制作用比其他升温处理更明显。(2) 在种内竞争条件下,磷对 A. argyi 和 S. canadensis 的株高、根长和生物量都有促进作用。在低磷和高磷条件下,A. argyi(22.75% 和 53.61%)和 S. canadensis(11.49% 和 27.76%)的生物量分别增加。在种间竞争条件下,两种植物的株高和生物量对磷的反应趋势不同。不过,与未处理组相比,S. canadensis 的竞争力有所提高。(3)植物的生物量适应性对升温比磷处理更敏感,升温降低了磷的促进作用,表明升温和磷对植物有交互作用。磷加剧了 DTRinc 对 S. canadensis 生物量的抑制作用,这种抑制作用比其他升温方法更明显。两种植物在不同竞争情景下对升温和磷处理的不同反应反映了它们适应环境的生态策略的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信