Utilization of Artificial Intelligence for the automated recognition of fine arts.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0312739
Ruhua Chen, Mohammad Reza Ghavidel Aghdam, Mohammad Khishe
{"title":"Utilization of Artificial Intelligence for the automated recognition of fine arts.","authors":"Ruhua Chen, Mohammad Reza Ghavidel Aghdam, Mohammad Khishe","doi":"10.1371/journal.pone.0312739","DOIUrl":null,"url":null,"abstract":"<p><p>Fine art recognition, traditionally dependent on human expertise, is undergoing a significant transformation with the integration of Artificial Intelligence (AI) and deep learning. This article introduces a novel AI-based approach for fine art recognition, utilizing Convolutional Neural Networks (CNNs) and advanced feature extraction techniques. Addressing the inherent challenges within this domain, we present a systematic methodology to enhance automated fine art recognition. By leveraging critical dataset characteristics such as objective type, genre, material, technique, and department, our method exhibits exceptional performance in classifying fine art pieces across diverse attributes. Our approach significantly improves accuracy and efficiency by integrating advanced feature extraction techniques with a customized CNN architecture. Experimental validation on a benchmark dataset highlights the efficacy of our method, indicating substantial contributions to the interdisciplinary field of fine art analysis.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0312739"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0312739","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fine art recognition, traditionally dependent on human expertise, is undergoing a significant transformation with the integration of Artificial Intelligence (AI) and deep learning. This article introduces a novel AI-based approach for fine art recognition, utilizing Convolutional Neural Networks (CNNs) and advanced feature extraction techniques. Addressing the inherent challenges within this domain, we present a systematic methodology to enhance automated fine art recognition. By leveraging critical dataset characteristics such as objective type, genre, material, technique, and department, our method exhibits exceptional performance in classifying fine art pieces across diverse attributes. Our approach significantly improves accuracy and efficiency by integrating advanced feature extraction techniques with a customized CNN architecture. Experimental validation on a benchmark dataset highlights the efficacy of our method, indicating substantial contributions to the interdisciplinary field of fine art analysis.

利用人工智能自动识别美术作品。
美术识别传统上依赖于人类的专业知识,但随着人工智能(AI)与深度学习的融合,美术识别正在经历一场重大变革。本文利用卷积神经网络(CNN)和先进的特征提取技术,介绍了一种基于人工智能的美术识别新方法。针对这一领域固有的挑战,我们提出了一种系统化的方法来提高美术作品的自动识别能力。通过利用目标类型、流派、材料、技术和部门等关键数据集特征,我们的方法在对不同属性的美术作品进行分类时表现出卓越的性能。通过将先进的特征提取技术与定制的 CNN 架构相结合,我们的方法大大提高了准确性和效率。在基准数据集上的实验验证凸显了我们方法的功效,表明我们对美术分析这一跨学科领域做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信