Yi Xu, Changying Li, Huan Yin, Somaira Nowsheen, Xin Xu, Wenjuan Kang, Xin Liu, Lifeng Chen, Zhenkun Lou, Junlin Yi, Min Deng
{"title":"STK39-mediated amplification of γ-H2A.X promotes homologous recombination and contributes to PARP inhibitor resistance.","authors":"Yi Xu, Changying Li, Huan Yin, Somaira Nowsheen, Xin Xu, Wenjuan Kang, Xin Liu, Lifeng Chen, Zhenkun Lou, Junlin Yi, Min Deng","doi":"10.1093/nar/gkae1099","DOIUrl":null,"url":null,"abstract":"<p><p>The phosphorylation of histone H2A.X into γH2A.X is a crucial early event in the DNA damage response, marking DNA damage sites and initiating repair processes. While ATM kinase is traditionally recognized as the primary mediator of H2A.X phosphorylation, our study identifies serine/threonine kinase 39 (STK39) as a novel enhancer of this critical signaling pathway. We demonstrate that after DNA damage, STK39 undergoes phosphorylation by the ATM kinase, facilitating its interaction with the Mre11-Rad50-Nbs1 complex and subsequent recruitment to chromatin. This recruitment enables STK39 to further phosphorylate H2A.X, thus amplifying γH2A.X production and promoting homologous recombination repair. Notably, we observe a significant upregulation of STK39 in pancreatic adenocarcinoma (PAAD) tissues, correlating with heightened resistance to PARPi therapy. Furthermore, we demonstrate the synergistic efficacy of combining STK39 inhibition with PARP inhibitors in suppressing and reversing PAAD growth. This study not only provides new insights into the molecular dynamics of H2A.X phosphorylation but also highlights the therapeutic potential of targeting STK39 to enhance PARPi sensitivity in PAAD (created with BioRender).</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1099","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phosphorylation of histone H2A.X into γH2A.X is a crucial early event in the DNA damage response, marking DNA damage sites and initiating repair processes. While ATM kinase is traditionally recognized as the primary mediator of H2A.X phosphorylation, our study identifies serine/threonine kinase 39 (STK39) as a novel enhancer of this critical signaling pathway. We demonstrate that after DNA damage, STK39 undergoes phosphorylation by the ATM kinase, facilitating its interaction with the Mre11-Rad50-Nbs1 complex and subsequent recruitment to chromatin. This recruitment enables STK39 to further phosphorylate H2A.X, thus amplifying γH2A.X production and promoting homologous recombination repair. Notably, we observe a significant upregulation of STK39 in pancreatic adenocarcinoma (PAAD) tissues, correlating with heightened resistance to PARPi therapy. Furthermore, we demonstrate the synergistic efficacy of combining STK39 inhibition with PARP inhibitors in suppressing and reversing PAAD growth. This study not only provides new insights into the molecular dynamics of H2A.X phosphorylation but also highlights the therapeutic potential of targeting STK39 to enhance PARPi sensitivity in PAAD (created with BioRender).
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.