Construction of a CNN-SK weld penetration recognition model based on the Mel spectrum of a CMT arc sound signal.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0311119
Wenlong Zheng, Kai Yang, Jiadui Chen, Haisong Huang, Jingwei Yang
{"title":"Construction of a CNN-SK weld penetration recognition model based on the Mel spectrum of a CMT arc sound signal.","authors":"Wenlong Zheng, Kai Yang, Jiadui Chen, Haisong Huang, Jingwei Yang","doi":"10.1371/journal.pone.0311119","DOIUrl":null,"url":null,"abstract":"<p><p>Arc sound signals are considered appropriate for detecting penetration states in cold metal transfer (CMT) welding because of their noninvasive nature and immunity to interference from splatter and arc light. Nevertheless, the stability of arc sound signals is suboptimal, the conventional feature extraction methods are inefficient, and the significance of arc sound attributes for determining penetration statuses is often overlooked. In this study, a compact convolutional neural network (CNN) model is proposed for the adaptive extraction of features from arc sound signals. The model uses the Mel spectrum diagram of an arc sound signal obtained through a short-time Fourier transform (STFT) and a Mel filter bank conversion step as its input. To improve the recognition capabilities of the model, a novel CNN-selective kernel (SK) model for weld penetration recognition is introduced, which integrates the dynamic selection kernel network (SKNet) into the CNN architecture. The experimental results indicate that the CNN-SK model outperforms the traditional models, achieving an accuracy of 98.83% on the validation dataset. This model holds promise for assessing weld penetration in CMT welding applications. The project is available at https://github.com/ZWL58/data/tree/master.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 11","pages":"e0311119"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11588216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0311119","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Arc sound signals are considered appropriate for detecting penetration states in cold metal transfer (CMT) welding because of their noninvasive nature and immunity to interference from splatter and arc light. Nevertheless, the stability of arc sound signals is suboptimal, the conventional feature extraction methods are inefficient, and the significance of arc sound attributes for determining penetration statuses is often overlooked. In this study, a compact convolutional neural network (CNN) model is proposed for the adaptive extraction of features from arc sound signals. The model uses the Mel spectrum diagram of an arc sound signal obtained through a short-time Fourier transform (STFT) and a Mel filter bank conversion step as its input. To improve the recognition capabilities of the model, a novel CNN-selective kernel (SK) model for weld penetration recognition is introduced, which integrates the dynamic selection kernel network (SKNet) into the CNN architecture. The experimental results indicate that the CNN-SK model outperforms the traditional models, achieving an accuracy of 98.83% on the validation dataset. This model holds promise for assessing weld penetration in CMT welding applications. The project is available at https://github.com/ZWL58/data/tree/master.

基于 CMT 电弧声信号的 Mel 频谱构建 CNN-SK 焊接熔透识别模型。
弧声信号被认为适合用于检测冷金属焊接 (CMT) 的熔透状态,因为它具有非侵入性,并且不受飞溅物和弧光的干扰。然而,弧声信号的稳定性并不理想,传统的特征提取方法效率低下,而且弧声属性对于确定熔透状态的重要性往往被忽视。本研究提出了一种紧凑型卷积神经网络(CNN)模型,用于自适应提取弧声信号的特征。该模型使用通过短时傅立叶变换(STFT)和梅尔滤波器组转换步骤获得的弧声信号梅尔频谱图作为输入。为了提高该模型的识别能力,引入了一种用于焊接穿透识别的新型 CNN 选择核(SK)模型,该模型将动态选择核网络(SKNet)集成到 CNN 架构中。实验结果表明,CNN-SK 模型优于传统模型,在验证数据集上达到了 98.83% 的准确率。该模型有望用于评估 CMT 焊接应用中的焊缝渗透情况。该项目可在 https://github.com/ZWL58/data/tree/master 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信