Harmanpreet Singh Grewal, Zhiming Qi, Vinayak Shedekar, Kevin King
{"title":"Using RZWQM2-P to capture tile drainage phosphorus dynamics in Ohio.","authors":"Harmanpreet Singh Grewal, Zhiming Qi, Vinayak Shedekar, Kevin King","doi":"10.1002/jeq2.20656","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited. This study evaluates RZWQM2-P in simulating P dynamics using extensive data and assesses the potential of management practices for mitigating P losses. Subsurface drainage and surface runoff flows were monitored at a tile-drained site from 2017 to 2020 in Ohio, and the water flow and P loss data were summarized on a daily basis. RZWQM2-P was calibrated and validated using those observed data and was subsequently used to assess the effectiveness of controlled drainage (CD) and winter cover crops (CC) in reducing P losses. The model satisfactorily simulated dissolved reactive P (DRP) loss from tile drainage on daily and monthly bases (Nash-Sutcliffe efficiency [NSE] = 0.50, R<sup>2 </sup>= 0.52, index of agreement [IoA] = 0.84 for daily; NSE = 0.73, R<sup>2 </sup>= 0.78, IoA = 0.94 for monthly) and total P (TP) loss on a monthly basis (NSE = 0.64, R<sup>2 </sup>= 0.65, IoA = 0.88), but the daily TP simulation was less accurate (NSE = 0.30, R<sup>2 </sup>= 0.30, IoA = 0.59). Simulations showed that winter rye CC reduced DRP by 16% and TP by 4% compared to the base scenario, whereas CD increased DRP (60%-129%) and TP (5%-17%) losses at three tested outlet elevations compared to free drainage. RZWQM2-P can capture P dynamics in tile-drained cropland and is a promising tool for effective P management.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":"217-232"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20656","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus (P) loading from tile-drained agricultural lands is linked to water quality and aquatic ecosystem degradation. The RZWQM2-P model was developed to simulate the fate and transport of P in soil-water-plant systems, especially in tile-drained croplands. Comprehensive evaluation and application of RZWQM2-P, however, remains limited. This study evaluates RZWQM2-P in simulating P dynamics using extensive data and assesses the potential of management practices for mitigating P losses. Subsurface drainage and surface runoff flows were monitored at a tile-drained site from 2017 to 2020 in Ohio, and the water flow and P loss data were summarized on a daily basis. RZWQM2-P was calibrated and validated using those observed data and was subsequently used to assess the effectiveness of controlled drainage (CD) and winter cover crops (CC) in reducing P losses. The model satisfactorily simulated dissolved reactive P (DRP) loss from tile drainage on daily and monthly bases (Nash-Sutcliffe efficiency [NSE] = 0.50, R2 = 0.52, index of agreement [IoA] = 0.84 for daily; NSE = 0.73, R2 = 0.78, IoA = 0.94 for monthly) and total P (TP) loss on a monthly basis (NSE = 0.64, R2 = 0.65, IoA = 0.88), but the daily TP simulation was less accurate (NSE = 0.30, R2 = 0.30, IoA = 0.59). Simulations showed that winter rye CC reduced DRP by 16% and TP by 4% compared to the base scenario, whereas CD increased DRP (60%-129%) and TP (5%-17%) losses at three tested outlet elevations compared to free drainage. RZWQM2-P can capture P dynamics in tile-drained cropland and is a promising tool for effective P management.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.