{"title":"Dissecting roles of pannier splice variants during pupal and adult morphogenesis in Henosepilachna vigintioctopunctata.","authors":"Ping Xu, Lin Jin, Guo-Qing Li, Long-Ji Ze","doi":"10.1111/imb.12977","DOIUrl":null,"url":null,"abstract":"<p><p>The GATA transcription factor gene, pannier (pnr), has been extensively studied in Drosophila, revealing its crucial role in dorsal closure, heart development and the regulation of cuticular bristle patterns in adults. However, studies on the functions of pnr in the development of coleopteran insects are still scarce. Herein, we identified the pnr gene in Henosepilachna vigintioctopunctata and discovered two splicing variants named Hvpnr-α and Hvpnr-β respectively. Temporal expression analysis revealed that Hvpnr, Hvpnr-α and Hvpnr-β were expressed at various stages including egg, larval, pupal and adult stages. To investigate the developmental role of Hvpnr in H. vigintioctopunctata, RNA interference (RNAi) assays were conducted on third-instar larvae. Injection of dsHvpnr, dsHvpnr-α and dsHvpnr-β and co-injection of dsHvpnr-α and dsHvpnr-β (dsRNAs mix) all resulted in significant downregulation of the target transcripts. In pupae developed from dsHvpnr-treated larvae, the symmetric black spots on both sides of the mesothorax, metathorax and tergites approached and connected. Pupal morphometric analysis revealed that dsHvpnr, dsHvpnr-α and dsRNAs mix injections significantly narrowed the spacing of dorsal symmetric spots, contracted spiracle distances on tergite sides, diminished pronotum width and markedly reduced inter-compound eye spacing compared to controls. In addition, injections of dsHvpnr and dsRNAs mix significantly reduced the oviposition in female adults. Silencing of Hvpnr led to the disappearance of the scutellum in adults, preventing the elytra from closing and properly attaching to the dorsal side of the abdomen. It is noteworthy that dsHvpnr-α or dsRNA mix induced scutellum formation defects in adults, while knockdown of Hvpnr-β had no impact. Furthermore, in stark contrast to previous studies on ladybird species such as Harmonia axyridis and Coccinella septempunctata, silencing Hvpnr did not affect melanin synthesis in pupae and adults in H. vigintioctopunctata. These findings demonstrate that among the splice variants of Hvpnr, Hvpnr-α plays a dominant regulatory role in the post-embryonic morphogenesis of H. vigintioctopunctata. This study also shows that Hvpnr is not involved in melanin synthesis, indicating significant functional differentiation of pnr during the evolution of ladybirds.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12977","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The GATA transcription factor gene, pannier (pnr), has been extensively studied in Drosophila, revealing its crucial role in dorsal closure, heart development and the regulation of cuticular bristle patterns in adults. However, studies on the functions of pnr in the development of coleopteran insects are still scarce. Herein, we identified the pnr gene in Henosepilachna vigintioctopunctata and discovered two splicing variants named Hvpnr-α and Hvpnr-β respectively. Temporal expression analysis revealed that Hvpnr, Hvpnr-α and Hvpnr-β were expressed at various stages including egg, larval, pupal and adult stages. To investigate the developmental role of Hvpnr in H. vigintioctopunctata, RNA interference (RNAi) assays were conducted on third-instar larvae. Injection of dsHvpnr, dsHvpnr-α and dsHvpnr-β and co-injection of dsHvpnr-α and dsHvpnr-β (dsRNAs mix) all resulted in significant downregulation of the target transcripts. In pupae developed from dsHvpnr-treated larvae, the symmetric black spots on both sides of the mesothorax, metathorax and tergites approached and connected. Pupal morphometric analysis revealed that dsHvpnr, dsHvpnr-α and dsRNAs mix injections significantly narrowed the spacing of dorsal symmetric spots, contracted spiracle distances on tergite sides, diminished pronotum width and markedly reduced inter-compound eye spacing compared to controls. In addition, injections of dsHvpnr and dsRNAs mix significantly reduced the oviposition in female adults. Silencing of Hvpnr led to the disappearance of the scutellum in adults, preventing the elytra from closing and properly attaching to the dorsal side of the abdomen. It is noteworthy that dsHvpnr-α or dsRNA mix induced scutellum formation defects in adults, while knockdown of Hvpnr-β had no impact. Furthermore, in stark contrast to previous studies on ladybird species such as Harmonia axyridis and Coccinella septempunctata, silencing Hvpnr did not affect melanin synthesis in pupae and adults in H. vigintioctopunctata. These findings demonstrate that among the splice variants of Hvpnr, Hvpnr-α plays a dominant regulatory role in the post-embryonic morphogenesis of H. vigintioctopunctata. This study also shows that Hvpnr is not involved in melanin synthesis, indicating significant functional differentiation of pnr during the evolution of ladybirds.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).