Uttam Singh Baghel, Priyanka Kriplani, Neelam M Patel, Manpreet Kaur, Kapil Sharma, Monika Meghani, Abhay Sharma, Deeksha Singh, Bhawani Singh, William N Setzer, Javad Sharifi-Rad, Daniela Calina
{"title":"Flavopiridol: a promising cyclin-dependent kinase inhibitor in cancer treatment.","authors":"Uttam Singh Baghel, Priyanka Kriplani, Neelam M Patel, Manpreet Kaur, Kapil Sharma, Monika Meghani, Abhay Sharma, Deeksha Singh, Bhawani Singh, William N Setzer, Javad Sharifi-Rad, Daniela Calina","doi":"10.1007/s00210-024-03599-2","DOIUrl":null,"url":null,"abstract":"<p><p>Flavopiridol, a synthetic flavonoid derived from rohitukine, stands out as a powerful cyclin-dependent kinase (CDK) inhibitor with significant anticancer properties. Its action mechanisms involve inducing cell cycle arrest, triggering apoptosis, and inhibiting transcription across various cancer types. Despite these promising effects, flavopiridol's clinical use has been hampered by issues related to toxicity and drug resistance. This study aims to comprehensively review flavopiridol's mechanisms of action, structure-activity relationships, synthetic derivatives, pharmacokinetics, and its potential role in clinical applications, with a focus on how combination therapies can enhance its efficacy and address resistance challenges in cancer treatment. A thorough analysis of key studies was performed, examining flavopiridol's anticancer properties, emphasizing its structure-activity relationships, synthetic modifications, and clinical outcomes. The anticancer effects of flavopiridol are primarily driven by its inhibition of CDKs, induction of apoptosis, promotion of oxidative stress, and antiangiogenic activity. Modifications in its chemical structure, especially in the D ring, have shown a significant impact on its CDK inhibitory potency. Several synthetic derivatives have also demonstrated enhanced anticancer activity. While preclinical models highlight flavopiridol's potential in treating cancers such as leukemia and solid tumors, clinical trials have brought attention to its limitations, particularly regarding toxicity and resistance. However, flavopiridol remains a promising candidate for cancer therapy, especially when used in combination with other treatments. Future research efforts should focus on refining its therapeutic profile, minimizing toxicity, and investigating synergistic treatment combinations, including those with immunotherapy. Understanding the mechanisms of resistance and discovering predictive biomarkers will be crucial for its effective integration into clinical practice.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"3489-3511"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03599-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Flavopiridol, a synthetic flavonoid derived from rohitukine, stands out as a powerful cyclin-dependent kinase (CDK) inhibitor with significant anticancer properties. Its action mechanisms involve inducing cell cycle arrest, triggering apoptosis, and inhibiting transcription across various cancer types. Despite these promising effects, flavopiridol's clinical use has been hampered by issues related to toxicity and drug resistance. This study aims to comprehensively review flavopiridol's mechanisms of action, structure-activity relationships, synthetic derivatives, pharmacokinetics, and its potential role in clinical applications, with a focus on how combination therapies can enhance its efficacy and address resistance challenges in cancer treatment. A thorough analysis of key studies was performed, examining flavopiridol's anticancer properties, emphasizing its structure-activity relationships, synthetic modifications, and clinical outcomes. The anticancer effects of flavopiridol are primarily driven by its inhibition of CDKs, induction of apoptosis, promotion of oxidative stress, and antiangiogenic activity. Modifications in its chemical structure, especially in the D ring, have shown a significant impact on its CDK inhibitory potency. Several synthetic derivatives have also demonstrated enhanced anticancer activity. While preclinical models highlight flavopiridol's potential in treating cancers such as leukemia and solid tumors, clinical trials have brought attention to its limitations, particularly regarding toxicity and resistance. However, flavopiridol remains a promising candidate for cancer therapy, especially when used in combination with other treatments. Future research efforts should focus on refining its therapeutic profile, minimizing toxicity, and investigating synergistic treatment combinations, including those with immunotherapy. Understanding the mechanisms of resistance and discovering predictive biomarkers will be crucial for its effective integration into clinical practice.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.