{"title":"Triple-Action Therapy: Combining Machine Learning, Docking, and Dynamics to Combat BRCA1-Mutated Breast Cancer.","authors":"Ashiru Aliyu Zainulabidin, Aminu Jibril Sufyan, Muthu Kumar Thirunavukkarasu","doi":"10.1007/s12033-024-01328-x","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer dominates women's mortality, and among other factors, mutations in the BRCA1 gene are significant risk factors. Several approaches are followed to treat the BRCA1 affected cancer patients. However, specific BRCA1 inhibitors are not available till date due to its structural complexity. In addition, there are several limitations associated with the existing drugs used to treat BRCA1-related breast cancer and some side effects. The side effects include symptoms such as hot flashes, joint pain, nausea, fatigue, hair loss, diarrhea, chills, fever, and others. Therefore, advanced approaches needed that can overcome all the limitations and side effects of the current inhibitors. In this study, we adopted a multistep approach to identify potential inhibitors for BRCA1-mutated breast cancer. We used our developed machine learning models to screen potential inhibitors. Molecular docking approach was carried out for the screened hit compounds with BRCA1 and its mutated forms. Two ligands, β-amyrin and Narirutin, has shown significant performance in multiple scoring schemes such as molecular docking and RF score calculations. Molecular dynamics simulations demonstrated the stability of the complexes formed by β-amyrin and Narirutin with BRCA1, with lower RMSD values and less RMSF fluctuations at the binding site locations. Principal component analysis (PCA) and free energy landscape (FEL) further confirmed the compactness and favorable binding of β-Amyrin and Narirutin to BRCA1. These findings suggest that β-amyrin and Narirutin have potential as therapeutic agents against BRCA1-mutated breast cancer.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01328-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer dominates women's mortality, and among other factors, mutations in the BRCA1 gene are significant risk factors. Several approaches are followed to treat the BRCA1 affected cancer patients. However, specific BRCA1 inhibitors are not available till date due to its structural complexity. In addition, there are several limitations associated with the existing drugs used to treat BRCA1-related breast cancer and some side effects. The side effects include symptoms such as hot flashes, joint pain, nausea, fatigue, hair loss, diarrhea, chills, fever, and others. Therefore, advanced approaches needed that can overcome all the limitations and side effects of the current inhibitors. In this study, we adopted a multistep approach to identify potential inhibitors for BRCA1-mutated breast cancer. We used our developed machine learning models to screen potential inhibitors. Molecular docking approach was carried out for the screened hit compounds with BRCA1 and its mutated forms. Two ligands, β-amyrin and Narirutin, has shown significant performance in multiple scoring schemes such as molecular docking and RF score calculations. Molecular dynamics simulations demonstrated the stability of the complexes formed by β-amyrin and Narirutin with BRCA1, with lower RMSD values and less RMSF fluctuations at the binding site locations. Principal component analysis (PCA) and free energy landscape (FEL) further confirmed the compactness and favorable binding of β-Amyrin and Narirutin to BRCA1. These findings suggest that β-amyrin and Narirutin have potential as therapeutic agents against BRCA1-mutated breast cancer.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.