Débora Caroline do Nascimento Rodrigues, Jhonatas Cley Santos Porto, Ingredy Lopes Dos Santos, José Ivo Araújo Beserra Filho, Paulo Michel Pinheiro Ferreira
{"title":"Repositioning anthelmintics for the treatment of inflammatory-based pathological conditions.","authors":"Débora Caroline do Nascimento Rodrigues, Jhonatas Cley Santos Porto, Ingredy Lopes Dos Santos, José Ivo Araújo Beserra Filho, Paulo Michel Pinheiro Ferreira","doi":"10.1007/s10787-024-01605-w","DOIUrl":null,"url":null,"abstract":"<p><p>Acute, uncontrolled and/or long-lasting inflammation causes a breakdown in immunological tolerance, leading to chronicity and contributing to a series of significant local or systemic tissue changes. Anti-inflammatory efficacy, fewer adverse effects, improved selectivity, and curative action are imminent issues for patients suffering from chronic inflammation-related pathologies. Then, we performed a complete and critical review about anthelmintics, discussing the main classes and the available preclinical evidence on repurposing to treat inflammation-based conditions. Despite low bioavailability, many benzimidazoles (albendazole and mebendazole), salicylanilides (niclosamide), macrocyclic lactones (avermectins), pyrazinoisoquinolones (praziquantel), thiazolides (nitazoxanide), piperazine derivatives, and imidazothiazoles (levamisole) indicate that repositioning is a promising strategy. They may represent a lower cost and time-saving course to expand anti-inflammatory options. Although mechanisms of action are not fully elucidated and well-delineated, in general, anthelmintics disrupt mitogen-activated protein kinases, the synthesis of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IFN-γ), the migration and infiltration of leukocytes, and decrease COX-2 expression, which impacts negatively on the release of prostanoids and leukotrienes. Moreover, some of them reduce nuclear accumulation of NF-κB (niclosamide, albendazole, and ivermectin), levels of nitric oxide (nitazoxanide and albendazole), and mucus, cytokines, and bronchoconstriction in experimental inflammatory pulmonary diseases (ivermectin and niclosamide). Considering the linking between cytokines, bradykinin, histamine, and nociceptors with algesia, anthelmintics also stand out for treating inflammatory pain disorders (ivermectin, niclosamide, nitazoxanide, mebendazole, levamisole), including for cancer-related pain status. There are obstacles, including the low bioavailability and the first-pass metabolism.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01605-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute, uncontrolled and/or long-lasting inflammation causes a breakdown in immunological tolerance, leading to chronicity and contributing to a series of significant local or systemic tissue changes. Anti-inflammatory efficacy, fewer adverse effects, improved selectivity, and curative action are imminent issues for patients suffering from chronic inflammation-related pathologies. Then, we performed a complete and critical review about anthelmintics, discussing the main classes and the available preclinical evidence on repurposing to treat inflammation-based conditions. Despite low bioavailability, many benzimidazoles (albendazole and mebendazole), salicylanilides (niclosamide), macrocyclic lactones (avermectins), pyrazinoisoquinolones (praziquantel), thiazolides (nitazoxanide), piperazine derivatives, and imidazothiazoles (levamisole) indicate that repositioning is a promising strategy. They may represent a lower cost and time-saving course to expand anti-inflammatory options. Although mechanisms of action are not fully elucidated and well-delineated, in general, anthelmintics disrupt mitogen-activated protein kinases, the synthesis of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-12, and IFN-γ), the migration and infiltration of leukocytes, and decrease COX-2 expression, which impacts negatively on the release of prostanoids and leukotrienes. Moreover, some of them reduce nuclear accumulation of NF-κB (niclosamide, albendazole, and ivermectin), levels of nitric oxide (nitazoxanide and albendazole), and mucus, cytokines, and bronchoconstriction in experimental inflammatory pulmonary diseases (ivermectin and niclosamide). Considering the linking between cytokines, bradykinin, histamine, and nociceptors with algesia, anthelmintics also stand out for treating inflammatory pain disorders (ivermectin, niclosamide, nitazoxanide, mebendazole, levamisole), including for cancer-related pain status. There are obstacles, including the low bioavailability and the first-pass metabolism.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]