{"title":"Risk-adjusted observed minus expected cumulative sum (RA O-E CUSUM) chart for visualisation and monitoring of surgical outcomes.","authors":"Quentin Cordier, Hugo Prieur, Antoine Duclos","doi":"10.1136/bmjqs-2024-017935","DOIUrl":null,"url":null,"abstract":"<p><p>To improve patient safety, surgeons can continually monitor the surgical outcomes of their patients. To this end, they can use statistical process control tools, which primarily originated in the manufacturing industry and are now widely used in healthcare. These tools belong to a broad family, making it challenging to identify the most suitable methodology to monitor surgical outcomes. The selected tools must balance statistical rigour with surgeon usability, enabling both statistical interpretation of trends over time and comprehensibility for the surgeons, their primary users. On one hand, the observed minus expected (O-E) chart is a simple and intuitive tool that allows surgeons without statistical expertise to view and interpret their activity; however, it may not possess the sophisticated algorithms required to accurately identify important changes in surgical performance. On the other hand, a statistically robust tool like the cumulative sum (CUSUM) method can be helpful but may be too complex for surgeons to interpret and apply in practice without proper statistical training. To address this issue, we developed a new risk-adjusted (RA) O-E CUSUM chart that aims to provide a balanced solution, integrating the visualisation strengths of a user-friendly O-E chart with the statistical interpretation capabilities of a CUSUM chart. With the RA O-E CUSUM chart, surgeons can effectively monitor patients' outcomes and identify sequences of statistically abnormal changes, indicating either deterioration or improvement in surgical outcomes. They can also quantify potentially preventable or avoidable adverse events during these sequences. Subsequently, surgical teams can try implementing changes to potentially improve their performance and enhance patient safety over time. This paper outlines the methodology for building the tool and provides a concrete example using real surgical data to demonstrate its application.</p>","PeriodicalId":9077,"journal":{"name":"BMJ Quality & Safety","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Quality & Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/bmjqs-2024-017935","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
To improve patient safety, surgeons can continually monitor the surgical outcomes of their patients. To this end, they can use statistical process control tools, which primarily originated in the manufacturing industry and are now widely used in healthcare. These tools belong to a broad family, making it challenging to identify the most suitable methodology to monitor surgical outcomes. The selected tools must balance statistical rigour with surgeon usability, enabling both statistical interpretation of trends over time and comprehensibility for the surgeons, their primary users. On one hand, the observed minus expected (O-E) chart is a simple and intuitive tool that allows surgeons without statistical expertise to view and interpret their activity; however, it may not possess the sophisticated algorithms required to accurately identify important changes in surgical performance. On the other hand, a statistically robust tool like the cumulative sum (CUSUM) method can be helpful but may be too complex for surgeons to interpret and apply in practice without proper statistical training. To address this issue, we developed a new risk-adjusted (RA) O-E CUSUM chart that aims to provide a balanced solution, integrating the visualisation strengths of a user-friendly O-E chart with the statistical interpretation capabilities of a CUSUM chart. With the RA O-E CUSUM chart, surgeons can effectively monitor patients' outcomes and identify sequences of statistically abnormal changes, indicating either deterioration or improvement in surgical outcomes. They can also quantify potentially preventable or avoidable adverse events during these sequences. Subsequently, surgical teams can try implementing changes to potentially improve their performance and enhance patient safety over time. This paper outlines the methodology for building the tool and provides a concrete example using real surgical data to demonstrate its application.
期刊介绍:
BMJ Quality & Safety (previously Quality & Safety in Health Care) is an international peer review publication providing research, opinions, debates and reviews for academics, clinicians and healthcare managers focused on the quality and safety of health care and the science of improvement.
The journal receives approximately 1000 manuscripts a year and has an acceptance rate for original research of 12%. Time from submission to first decision averages 22 days and accepted articles are typically published online within 20 days. Its current impact factor is 3.281.