James M T Lewis, Dina M Bower, Alexander A Pavlov, Xiang Li, Sarinah Z Wahl, Jennifer L Eigenbrode, Amy C McAdam
{"title":"Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa.","authors":"James M T Lewis, Dina M Bower, Alexander A Pavlov, Xiang Li, Sarinah Z Wahl, Jennifer L Eigenbrode, Amy C McAdam","doi":"10.1089/ast.2024.0047","DOIUrl":null,"url":null,"abstract":"<p><p>If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":"1166-1186"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0047","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming