The Homeobox Transcription Factor Cux1 Coordinates Postnatal Epithelial Developmental Timing but Is Dispensable for Lung Organogenesis and Regeneration.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Barbara Zhao, Jacob Socha, Andrea Toth, Sharlene Fernandes, Helen Warheit-Niemi, Brandy Ruff, Gurjit K Khurana Hershey, Kelli L VanDussen, Daniel Swarr, William J Zacharias
{"title":"The Homeobox Transcription Factor Cux1 Coordinates Postnatal Epithelial Developmental Timing but Is Dispensable for Lung Organogenesis and Regeneration.","authors":"Barbara Zhao, Jacob Socha, Andrea Toth, Sharlene Fernandes, Helen Warheit-Niemi, Brandy Ruff, Gurjit K Khurana Hershey, Kelli L VanDussen, Daniel Swarr, William J Zacharias","doi":"10.1165/rcmb.2024-0147OC","DOIUrl":null,"url":null,"abstract":"<p><p>Lung epithelial progenitors use a complex network of known and predicted transcriptional regulators to influence early lung development. Here, we evaluate the function of one predicted regulator, Cux1, that we identified from transcriptional regulatory analysis of the SOX9+ distal lung progenitor network. We generated a new Cux1-floxed mouse model and created an epithelial-specific knockout of Cux1 using Shh-Cre (Cux1<sup>ShhCre-LOF</sup>). Postnatal Cux1<sup>ShhCre-LOF</sup> animals recapitulated key skin phenotypic features found in prior constitutive Cux1 knockout animals, confirming functionality of our new floxed model. Postnatal Cux1<sup>ShhCre-LOF</sup> mice displayed subtle alveolar simplification and a transient delay in alveologenesis and alveolar type 1 cell development without persistent lung phenotypes. Cux1<sup>ShhCre-LOF</sup> mice developed failure to thrive in their second and third weeks of life due to delayed ileal maturation, which similarly resolves by postnatal day 35. Finally, we challenged Cux1<sup>ShhCre-LOF</sup> with influenza-mediated lung injury to demonstrate that Cux1<sup>ShhCre-LOF</sup> mice undergo productive alveolar regeneration that is indistinguishable from WT animals. Together, these findings indicate that epithelial-specific loss of Cux1 leads to transient developmental delays in the skin, lung, and intestine without defects in definitive organogenesis. We conclude that Cux1 function is required for temporal optimization of developmental maturation in multiple organs with implications for susceptibility windows in developmental disease pathogenesis.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0147OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lung epithelial progenitors use a complex network of known and predicted transcriptional regulators to influence early lung development. Here, we evaluate the function of one predicted regulator, Cux1, that we identified from transcriptional regulatory analysis of the SOX9+ distal lung progenitor network. We generated a new Cux1-floxed mouse model and created an epithelial-specific knockout of Cux1 using Shh-Cre (Cux1ShhCre-LOF). Postnatal Cux1ShhCre-LOF animals recapitulated key skin phenotypic features found in prior constitutive Cux1 knockout animals, confirming functionality of our new floxed model. Postnatal Cux1ShhCre-LOF mice displayed subtle alveolar simplification and a transient delay in alveologenesis and alveolar type 1 cell development without persistent lung phenotypes. Cux1ShhCre-LOF mice developed failure to thrive in their second and third weeks of life due to delayed ileal maturation, which similarly resolves by postnatal day 35. Finally, we challenged Cux1ShhCre-LOF with influenza-mediated lung injury to demonstrate that Cux1ShhCre-LOF mice undergo productive alveolar regeneration that is indistinguishable from WT animals. Together, these findings indicate that epithelial-specific loss of Cux1 leads to transient developmental delays in the skin, lung, and intestine without defects in definitive organogenesis. We conclude that Cux1 function is required for temporal optimization of developmental maturation in multiple organs with implications for susceptibility windows in developmental disease pathogenesis.

同源框转录因子 Cux1 可协调出生后上皮细胞的发育时间,但对肺器官的形成和再生不起作用
肺上皮祖细胞利用已知和预测的转录调控因子组成的复杂网络影响早期肺发育。在这里,我们评估了一个预测调节因子 Cux1 的功能,该调节因子是我们从 SOX9+ 远端肺祖细胞网络的转录调控分析中发现的。我们建立了一个新的 Cux1-floxed小鼠模型,并利用 Shh-Cre 基因敲除了上皮特异性的 Cux1(Cux1ShhCre-LOF)。出生后的 Cux1ShhCre-LOF 动物重现了之前组成型 Cux1 基因敲除动物的主要皮肤表型特征,证实了我们新的浮性模型的功能性。出生后的 Cux1ShhCre-LOF 小鼠显示出微妙的肺泡简化,肺泡生成和肺泡 1 型细胞发育出现短暂延迟,但没有持续的肺表型。由于回肠成熟延迟,Cux1ShhCre-LOF小鼠在出生后第二周和第三周会出现发育不良,这种情况同样会在出生后第35天消失。最后,我们用流感介导的肺损伤挑战 Cux1ShhCre-LOF,证明 Cux1ShhCre-LOF 小鼠的肺泡再生与 WT 动物无异。这些发现共同表明,上皮特异性 Cux1 的缺失会导致皮肤、肺和肠道的短暂发育延迟,但不会导致器官最终形成的缺陷。我们的结论是,Cux1 的功能需要对多个器官的发育成熟进行时间优化,这对发育疾病发病机制中的易感性窗口具有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信