Prediction of therapeutic response to transarterial chemoembolization plus systemic therapy regimen in hepatocellular carcinoma using pretreatment contrast-enhanced MRI based habitat analysis and Crossformer model.
IF 2.3 3区 医学Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
{"title":"Prediction of therapeutic response to transarterial chemoembolization plus systemic therapy regimen in hepatocellular carcinoma using pretreatment contrast-enhanced MRI based habitat analysis and Crossformer model.","authors":"Yuemin Zhu, Tao Liu, Jianwei Chen, Liting Wen, Jiuquan Zhang, Dechun Zheng","doi":"10.1007/s00261-024-04709-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop habitat and deep learning (DL) models from multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) habitat images categorized using the K-means clustering algorithm. Additionally, we aim to assess the predictive value of identified regions for early evaluation of the responsiveness of hepatocellular carcinoma (HCC) patients to treatment with transarterial chemoembolization (TACE) plus molecular targeted therapies (MTT) and anti-PD-(L)1.</p><p><strong>Methods: </strong>A total of 102 patients with HCC from two institutions (A, n = 63 and B, n = 39) who received TACE plus systemic therapy were enrolled from September 2020 to January 2024. Multiple CE-MRI sequences were used to outline 3D volumes of interest (VOI) of the lesion. Subsequently, K-means clustering was applied to categorize intratumoral voxels into three distinct subgroups, based on signal intensity values of images. Using data from institution A, the habitat model was built with the ExtraTrees classifier after extracting radiomics features from intratumoral habitats. Similarly, the Crossformer model and ResNet50 model were trained on multi-channel data in institution A, and a DL model with Transformer-based aggregation was constructed to predict the response. Finally, all models underwent validation at institution B.</p><p><strong>Results: </strong>The Crossformer model and the habitat model both showed high area under the receiver operating characteristic curves (AUCs) of 0.869 and 0.877 (training cohort). In validation, AUC was 0.762 for the Crossformer model and 0.721 for the habitat model.</p><p><strong>Conclusion: </strong>The habitat model and DL model based on CE-MRI possesses the capability to non-invasively predict the efficacy of TACE plus systemic therapy in HCC patients, which is critical for precision treatment and patient outcomes.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04709-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To develop habitat and deep learning (DL) models from multi-phase contrast-enhanced magnetic resonance imaging (CE-MRI) habitat images categorized using the K-means clustering algorithm. Additionally, we aim to assess the predictive value of identified regions for early evaluation of the responsiveness of hepatocellular carcinoma (HCC) patients to treatment with transarterial chemoembolization (TACE) plus molecular targeted therapies (MTT) and anti-PD-(L)1.
Methods: A total of 102 patients with HCC from two institutions (A, n = 63 and B, n = 39) who received TACE plus systemic therapy were enrolled from September 2020 to January 2024. Multiple CE-MRI sequences were used to outline 3D volumes of interest (VOI) of the lesion. Subsequently, K-means clustering was applied to categorize intratumoral voxels into three distinct subgroups, based on signal intensity values of images. Using data from institution A, the habitat model was built with the ExtraTrees classifier after extracting radiomics features from intratumoral habitats. Similarly, the Crossformer model and ResNet50 model were trained on multi-channel data in institution A, and a DL model with Transformer-based aggregation was constructed to predict the response. Finally, all models underwent validation at institution B.
Results: The Crossformer model and the habitat model both showed high area under the receiver operating characteristic curves (AUCs) of 0.869 and 0.877 (training cohort). In validation, AUC was 0.762 for the Crossformer model and 0.721 for the habitat model.
Conclusion: The habitat model and DL model based on CE-MRI possesses the capability to non-invasively predict the efficacy of TACE plus systemic therapy in HCC patients, which is critical for precision treatment and patient outcomes.
期刊介绍:
Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section.
Reasons to Publish Your Article in Abdominal Radiology:
· Official journal of the Society of Abdominal Radiology (SAR)
· Published in Cooperation with:
European Society of Gastrointestinal and Abdominal Radiology (ESGAR)
European Society of Urogenital Radiology (ESUR)
Asian Society of Abdominal Radiology (ASAR)
· Efficient handling and Expeditious review
· Author feedback is provided in a mentoring style
· Global readership
· Readers can earn CME credits