Enhancing Lignin-Carbohydrate Complexes Production and Properties With Machine Learning.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-11-25 DOI:10.1002/cssc.202401711
Daryna Diment, Joakim Löfgren, Marie Alopaeus, Matthias Stosiek, MiJung Cho, Chunlin Xu, Michael Hummel, Davide Rigo, Patrick Rinke, Mikhail Balakshin
{"title":"Enhancing Lignin-Carbohydrate Complexes Production and Properties With Machine Learning.","authors":"Daryna Diment, Joakim Löfgren, Marie Alopaeus, Matthias Stosiek, MiJung Cho, Chunlin Xu, Michael Hummel, Davide Rigo, Patrick Rinke, Mikhail Balakshin","doi":"10.1002/cssc.202401711","DOIUrl":null,"url":null,"abstract":"<p><p>Lignin-carbohydrate complexes (LCCs) present a unique opportunity for harnessing the synergy between lignin and carbohydrates for high-value product development. However, producing LCCs in high yields remains a significant challenge. In this study, we address this challenge with a novel approach for the targeted production of LCCs. We optimized the AquaSolv Omni (AqSO) biorefinery for the synthesis of LCCs with high carbohydrate content (up to 60/100 Ar) and high yields (up to 15 wt %) by employing machine learning (ML). Our method significantly improves the yield of LCCs compared to conventional procedures, such as ball milling and enzymatic hydrolysis. The ML approach was pivotal in tuning the biorefinery to achieve the best performance with a limited number of experimental trials. Specifically, we utilized Bayesian Optimization to iteratively gather data and examine the effects of key processing conditions-temperature, process severity, and liquid-to-solid ratio-on yield and carbohydrate content. Through Pareto front analysis, we identified optimal trade-offs between LCC yield and carbohydrate content, discovering extensive regions of processing conditions that produce LCCs with yields of 8-15 wt % and carbohydrate contents ranging from 10-40/100 Ar. To assess the potential of these LCCs for high-value applications, we measured their glass transition temperature (T<sub>g</sub>), surface tension, and antioxidant activity. Notably, we found that LCCs with high carbohydrate content generally exhibit low T<sub>g</sub> and surface tension. Our biorefinery concept, augmented by ML-guided optimization, represents a significant step toward scalable production of LCCs with tailored properties.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401711"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401711","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin-carbohydrate complexes (LCCs) present a unique opportunity for harnessing the synergy between lignin and carbohydrates for high-value product development. However, producing LCCs in high yields remains a significant challenge. In this study, we address this challenge with a novel approach for the targeted production of LCCs. We optimized the AquaSolv Omni (AqSO) biorefinery for the synthesis of LCCs with high carbohydrate content (up to 60/100 Ar) and high yields (up to 15 wt %) by employing machine learning (ML). Our method significantly improves the yield of LCCs compared to conventional procedures, such as ball milling and enzymatic hydrolysis. The ML approach was pivotal in tuning the biorefinery to achieve the best performance with a limited number of experimental trials. Specifically, we utilized Bayesian Optimization to iteratively gather data and examine the effects of key processing conditions-temperature, process severity, and liquid-to-solid ratio-on yield and carbohydrate content. Through Pareto front analysis, we identified optimal trade-offs between LCC yield and carbohydrate content, discovering extensive regions of processing conditions that produce LCCs with yields of 8-15 wt % and carbohydrate contents ranging from 10-40/100 Ar. To assess the potential of these LCCs for high-value applications, we measured their glass transition temperature (Tg), surface tension, and antioxidant activity. Notably, we found that LCCs with high carbohydrate content generally exhibit low Tg and surface tension. Our biorefinery concept, augmented by ML-guided optimization, represents a significant step toward scalable production of LCCs with tailored properties.

利用机器学习提高木质素-碳水化合物复合物的生产和性能。
木质素-碳水化合物复合物(LCCs)为利用木质素和碳水化合物之间的协同作用开发高价值产品提供了一个独特的机会。然而,如何高产生产 LCC 仍然是一项重大挑战。在本研究中,我们采用一种新方法来有针对性地生产 LCCs,以应对这一挑战。我们通过机器学习(ML)优化了 AquaSolv Omni (AqSO) 生物精炼厂,以合成高碳水化合物含量(高达 60/100 Ar)和高产率(高达 15 wt%)的 LCC。与球磨和酶水解等传统工艺相比,我们的方法大大提高了 LCC 的产量。ML 方法在调整生物精炼厂以在有限的实验试验中实现最佳性能方面发挥了关键作用。通过帕累托前沿分析,我们确定了 LCC 产量和碳水化合物含量之间的最佳权衡,发现了生产 LCC 产量为 8-15 wt%、碳水化合物含量为 10-40/100 Ar 的广泛区域。我们测量了 LCC 的玻璃化转变温度(Tg)、表面张力和抗氧化活性。值得注意的是,我们发现碳水化合物含量高的 LCC 通常具有较低的 Tg 和表面张力。我们的生物炼制概念通过 ML 指导下的优化得到了增强,这是向可规模化生产具有定制特性的 LCC 迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信