Spatial Omics: Navigating Neuroscience Research into the New Era.

Q3 Neuroscience
Pengfei Guo, Yanxiang Deng
{"title":"Spatial Omics: Navigating Neuroscience Research into the New Era.","authors":"Pengfei Guo, Yanxiang Deng","doi":"10.1007/978-3-031-69188-1_6","DOIUrl":null,"url":null,"abstract":"<p><p>The human brain's complexity is underpinned by billions of neurons and trillions of synapses, necessitating coordinated activities across diverse cell types. Conventional techniques like in situ hybridization and immunohistochemistry, while valuable, face limitations in resolution and comprehensiveness when analyzing neuron types. Advances in spatial omics technologies, especially those integrating transcriptomics and proteomics, have revolutionized our understanding of brain tissue organization. These technologies, such as FISH-based, in situ sequencing-based (ISS), and next-generation sequencing (NGS)-based methods, provide detailed spatial context, overcoming previous limitations. FISH techniques, including smFISH and its variants like seqFISH and MERFISH, offer high-resolution spatial gene expression data. ISS approaches leverage padlock probes and rolling circle amplification to yield spatial transcriptome information. NGS-based methods, such as spatial transcriptomics and spatial-epigenomics, integrate spatial barcodes with single-cell sequencing, enabling comprehensive profiling of gene expression and epigenetic states in tissues. These innovations have propelled insights into neural development and disease, identifying cellular heterogeneity and molecular alterations in conditions like Alzheimer's and major depression. Despite challenges in cost, speed, and data analysis, spatial omics technologies continue to evolve, promising deeper insights into the molecular mechanisms of the brain and neurodegenerative diseases.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"41 ","pages":"133-149"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-69188-1_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

The human brain's complexity is underpinned by billions of neurons and trillions of synapses, necessitating coordinated activities across diverse cell types. Conventional techniques like in situ hybridization and immunohistochemistry, while valuable, face limitations in resolution and comprehensiveness when analyzing neuron types. Advances in spatial omics technologies, especially those integrating transcriptomics and proteomics, have revolutionized our understanding of brain tissue organization. These technologies, such as FISH-based, in situ sequencing-based (ISS), and next-generation sequencing (NGS)-based methods, provide detailed spatial context, overcoming previous limitations. FISH techniques, including smFISH and its variants like seqFISH and MERFISH, offer high-resolution spatial gene expression data. ISS approaches leverage padlock probes and rolling circle amplification to yield spatial transcriptome information. NGS-based methods, such as spatial transcriptomics and spatial-epigenomics, integrate spatial barcodes with single-cell sequencing, enabling comprehensive profiling of gene expression and epigenetic states in tissues. These innovations have propelled insights into neural development and disease, identifying cellular heterogeneity and molecular alterations in conditions like Alzheimer's and major depression. Despite challenges in cost, speed, and data analysis, spatial omics technologies continue to evolve, promising deeper insights into the molecular mechanisms of the brain and neurodegenerative diseases.

空间 Omics:引领神经科学研究进入新时代。
人脑的复杂性由数十亿个神经元和数万亿个突触构成,需要不同类型的细胞协调活动。原位杂交和免疫组化等传统技术虽然很有价值,但在分析神经元类型时却面临分辨率和全面性的限制。空间全息技术的进步,尤其是整合了转录组学和蛋白质组学的技术,彻底改变了我们对脑组织结构的认识。这些技术,如基于 FISH、原位测序(ISS)和下一代测序(NGS)的方法,提供了详细的空间背景,克服了以前的局限性。FISH 技术,包括 smFISH 及其变体,如 seqFISH 和 MERFISH,可提供高分辨率的空间基因表达数据。ISS 方法利用挂锁探针和滚动圈扩增来获得空间转录组信息。基于 NGS 的方法,如空间转录组学和空间表观基因组学,将空间条形码与单细胞测序结合起来,实现了对组织中基因表达和表观遗传状态的全面剖析。这些创新推动了对神经发育和疾病的深入研究,确定了阿尔茨海默氏症和重度抑郁症等疾病的细胞异质性和分子改变。尽管在成本、速度和数据分析方面存在挑战,空间 omics 技术仍在继续发展,有望深入了解大脑和神经退行性疾病的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信