Estimating nonlinear anisotropic properties of healthy and aneurysm ascending aortas using magnetic resonance imaging.

IF 3 3区 医学 Q2 BIOPHYSICS
Álvaro T Latorre Molins, Andrea Guala, Lydia Dux-Santoy, Gisela Teixidó-Turà, José Fernando Rodríguez-Palomares, Miguel Ángel Martínez Barca, Estefanía Peña Baquedano
{"title":"Estimating nonlinear anisotropic properties of healthy and aneurysm ascending aortas using magnetic resonance imaging.","authors":"Álvaro T Latorre Molins, Andrea Guala, Lydia Dux-Santoy, Gisela Teixidó-Turà, José Fernando Rodríguez-Palomares, Miguel Ángel Martínez Barca, Estefanía Peña Baquedano","doi":"10.1007/s10237-024-01907-6","DOIUrl":null,"url":null,"abstract":"<p><p>An ascending aortic aneurysm is an often asymptomatic localized dilatation of the aorta. Aortic rupture is a life-threatening event that occurs when the stress on the aortic wall exceeds its mechanical strength. Therefore, patient-specific finite element models could play an important role in estimating the risk of rupture. This requires not only the geometry of the aorta but also the nonlinear anisotropic properties of the tissue. In this study, we presented a methodology to estimate the mechanical properties of the aorta from magnetic resonance imaging (MRI). As a theoretical framework, we used finite element models to which we added noise to simulate clinical data from real patient geometry and different properties of healthy and aneurysmal aortic tissues collected from the literature. The proposed methodology considered the nonlinear properties, the zero pressure geometry, the heart motion, and the external tissue support. In addition, we analyzed the aorta as a homogeneous material and as a heterogeneous model with different properties for the ascending and descending parts. The methodology was also applied to pre-surgical,in vivo MRI data of a patient who underwent surgery during which an aortic wall sample was obtained. The results were compared with those obtained from ex vivo biaxial test of the patient's tissue sample. The methodology showed promising results after successfully recovering the nonlinear anisotropic material properties of all analyzed cases. This study demonstrates that the variable used during the optimization process can affect the result. In particular, variables such as principal strains were found to obtain more realistic materials than the displacement field.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01907-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

An ascending aortic aneurysm is an often asymptomatic localized dilatation of the aorta. Aortic rupture is a life-threatening event that occurs when the stress on the aortic wall exceeds its mechanical strength. Therefore, patient-specific finite element models could play an important role in estimating the risk of rupture. This requires not only the geometry of the aorta but also the nonlinear anisotropic properties of the tissue. In this study, we presented a methodology to estimate the mechanical properties of the aorta from magnetic resonance imaging (MRI). As a theoretical framework, we used finite element models to which we added noise to simulate clinical data from real patient geometry and different properties of healthy and aneurysmal aortic tissues collected from the literature. The proposed methodology considered the nonlinear properties, the zero pressure geometry, the heart motion, and the external tissue support. In addition, we analyzed the aorta as a homogeneous material and as a heterogeneous model with different properties for the ascending and descending parts. The methodology was also applied to pre-surgical,in vivo MRI data of a patient who underwent surgery during which an aortic wall sample was obtained. The results were compared with those obtained from ex vivo biaxial test of the patient's tissue sample. The methodology showed promising results after successfully recovering the nonlinear anisotropic material properties of all analyzed cases. This study demonstrates that the variable used during the optimization process can affect the result. In particular, variables such as principal strains were found to obtain more realistic materials than the displacement field.

利用磁共振成像估算健康和动脉瘤升主动脉的非线性各向异性特性。
升主动脉瘤通常是一种无症状的主动脉局部扩张。当主动脉壁上的应力超过其机械强度时,主动脉破裂就会危及生命。因此,针对特定患者的有限元模型可在估计破裂风险方面发挥重要作用。这不仅需要主动脉的几何形状,还需要组织的非线性各向异性特性。在这项研究中,我们提出了一种通过磁共振成像(MRI)估算主动脉机械特性的方法。作为一个理论框架,我们使用了有限元模型,并在其中添加了噪声,以模拟来自真实患者几何形状的临床数据以及从文献中收集的健康和动脉瘤主动脉组织的不同属性。所提出的方法考虑了非线性特性、零压几何形状、心脏运动和外部组织支持。此外,我们还将主动脉作为均质材料和异质模型进行了分析,主动脉的升支和降支部分具有不同的属性。我们还将该方法应用于一名接受手术的患者的术前活体核磁共振成像数据,并在手术过程中获取了主动脉壁样本。结果与患者组织样本的体外双轴测试结果进行了比较。在成功恢复所有分析案例的非线性各向异性材料属性后,该方法显示出良好的效果。这项研究表明,优化过程中使用的变量会影响结果。特别是,与位移场相比,主应变等变量能获得更真实的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomechanics and Modeling in Mechanobiology
Biomechanics and Modeling in Mechanobiology 工程技术-工程:生物医学
CiteScore
7.10
自引率
8.60%
发文量
119
审稿时长
6 months
期刊介绍: Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that (1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury, (2) identify and quantify mechanosensitive responses and their mechanisms, (3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and (4) report discoveries that advance therapeutic and diagnostic procedures. Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信