Zijie Wu, Lei He, Linhong Yan, Baoyi Tan, Lihua Ma, Guoli He, Zhenqing Dai, Ruikun Sun, Chengyong Li
{"title":"Hydrogels Treat Atopic Dermatitis by Transporting Marine-Derived miR-100-5p-Abundant Extracellular Vesicles.","authors":"Zijie Wu, Lei He, Linhong Yan, Baoyi Tan, Lihua Ma, Guoli He, Zhenqing Dai, Ruikun Sun, Chengyong Li","doi":"10.1021/acsbiomaterials.4c01649","DOIUrl":null,"url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a prevalent skin disorder worldwide. However, many AD medications are unsuitable for long-term use due to low therapeutic efficacy and side effects. Extracellular vesicles (EVs) extracted from <i>Pinctada martensii</i> mucus have demonstrated therapeutic efficacy in AD. It is hypothesized that EVs may exert their activity on mammalian cells through their specific contents. In this study, we analyzed the results of miRNA sequencing of the EVs and investigated the potency of highly expressed miR-100-5p in treating AD. To enhance the therapeutic efficiency of the EVs in AD, we developed oxidized sodium alginate (OSA)-carboxymethyl chitosan (CMCS) self-cross-linked hydrogels as a vehicle to deliver the EVs to BALB/c mice with dermatitis. The miR-100-5p in EVs exhibited a favorable anti-inflammatory function, while the hydrogels provided enhanced skin residency. Additionally, its efficacy in inflammation inhibition and collagen synthesis was demonstrated in in vivo experiments. Mechanistically, miR-100-5p in EVs exerted anti-inflammatory effects by inhibiting the expression of FOXO3, consequently suppressing the activation of the downstream NLRP3 signaling pathway. This study underscores the significance of utilizing OSA-CMCS hydrogels as a vehicle for delivering miR-100-5p in <i>P. martensii</i> mucus-derived EVs for the treatment of AD.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01649","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Atopic dermatitis (AD) is a prevalent skin disorder worldwide. However, many AD medications are unsuitable for long-term use due to low therapeutic efficacy and side effects. Extracellular vesicles (EVs) extracted from Pinctada martensii mucus have demonstrated therapeutic efficacy in AD. It is hypothesized that EVs may exert their activity on mammalian cells through their specific contents. In this study, we analyzed the results of miRNA sequencing of the EVs and investigated the potency of highly expressed miR-100-5p in treating AD. To enhance the therapeutic efficiency of the EVs in AD, we developed oxidized sodium alginate (OSA)-carboxymethyl chitosan (CMCS) self-cross-linked hydrogels as a vehicle to deliver the EVs to BALB/c mice with dermatitis. The miR-100-5p in EVs exhibited a favorable anti-inflammatory function, while the hydrogels provided enhanced skin residency. Additionally, its efficacy in inflammation inhibition and collagen synthesis was demonstrated in in vivo experiments. Mechanistically, miR-100-5p in EVs exerted anti-inflammatory effects by inhibiting the expression of FOXO3, consequently suppressing the activation of the downstream NLRP3 signaling pathway. This study underscores the significance of utilizing OSA-CMCS hydrogels as a vehicle for delivering miR-100-5p in P. martensii mucus-derived EVs for the treatment of AD.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture