{"title":"Transient dynamics and long-range transport of 2D exciton with managed potential disorder and phonon scattering","authors":"Wenqi Qian, Pengfei Qi, Yuchen Dai, Guangyi Tao, Haiyi Liu, Lie Lin, Zheyu Fang, Weiwei Liu","doi":"10.1038/s41699-024-00512-6","DOIUrl":null,"url":null,"abstract":"Two-dimensional excitons, characterized by high binding energy and valley pseudospin, are key to advancing photonic and electronic devices through controlled spatiotemporal dynamics of exciton flux. However, optimizing excitonic transport and emission dynamics, considering potential disorder and phonon scattering, requires further research. This study systematically investigates the effects of hexagonal boron nitride (hBN) encapsulation on semiconductor monolayers. Time-resolved photoluminescence (TRPL) and femtosecond pump-probe techniques reveal that encapsulation reduces excitonic radiative lifetime and enhances exciton-exciton annihilation, due to increased dielectric screening, which enlarges the Bohr radius and decreases binding energy. It also manages phonon scattering and thermal fluctuations, confirming non-monotonic temperature effects on emission and diffusion. The reduced disorder by hBN leads to a lowered optimized temperature from 250 K to 200 K, concurrently resulting in a doubled enhancement of the effective exciton diffusion coefficient. These findings highlight the importance of thermal and dielectric environmental control for ultrafast 2D exciton-based devices.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-9"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00512-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00512-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional excitons, characterized by high binding energy and valley pseudospin, are key to advancing photonic and electronic devices through controlled spatiotemporal dynamics of exciton flux. However, optimizing excitonic transport and emission dynamics, considering potential disorder and phonon scattering, requires further research. This study systematically investigates the effects of hexagonal boron nitride (hBN) encapsulation on semiconductor monolayers. Time-resolved photoluminescence (TRPL) and femtosecond pump-probe techniques reveal that encapsulation reduces excitonic radiative lifetime and enhances exciton-exciton annihilation, due to increased dielectric screening, which enlarges the Bohr radius and decreases binding energy. It also manages phonon scattering and thermal fluctuations, confirming non-monotonic temperature effects on emission and diffusion. The reduced disorder by hBN leads to a lowered optimized temperature from 250 K to 200 K, concurrently resulting in a doubled enhancement of the effective exciton diffusion coefficient. These findings highlight the importance of thermal and dielectric environmental control for ultrafast 2D exciton-based devices.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.