Bifurcation Near a Transcritical Singularity in Planar Singularly Perturbed Systems

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Jianhe Shen, Xiang Zhang, Kun Zhu
{"title":"Bifurcation Near a Transcritical Singularity in Planar Singularly Perturbed Systems","authors":"Jianhe Shen,&nbsp;Xiang Zhang,&nbsp;Kun Zhu","doi":"10.1111/sapm.12787","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We classify all bifurcation phenomena of the flow near a transcritical singularity in planar singularly perturbed differential systems that do not have a breaking parameter via qualitative analysis and blow-up technique. Here, the directional blown up vector fields can have several singularities and no first integral that are different from those in the literatures. The obtained local bifurcations are also illustrated by numerical simulations through a modified Leslie–Gower model, whose global dynamics is thereby obtained.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12787","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We classify all bifurcation phenomena of the flow near a transcritical singularity in planar singularly perturbed differential systems that do not have a breaking parameter via qualitative analysis and blow-up technique. Here, the directional blown up vector fields can have several singularities and no first integral that are different from those in the literatures. The obtained local bifurcations are also illustrated by numerical simulations through a modified Leslie–Gower model, whose global dynamics is thereby obtained.

平面奇异扰动系统跨临界奇点附近的分岔
我们通过定性分析和吹胀技术,对不存在断裂参数的平面奇异扰动微分系统中跨临界奇点附近流动的所有分岔现象进行了分类。在这里,定向吹大的矢量场可能有多个奇点,并且没有第一积分,这与文献中的奇点不同。我们还通过数值模拟来说明所得到的局部分岔,并由此得到了一个修正的莱斯利-高尔模型的全局动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信