A Nonlocal Reaction-Diffusion-Advection System Modeling the Phytoplankton and Zooplankton

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Biao Wang, Hua Nie, Jianhua Wu
{"title":"A Nonlocal Reaction-Diffusion-Advection System Modeling the Phytoplankton and Zooplankton","authors":"Biao Wang,&nbsp;Hua Nie,&nbsp;Jianhua Wu","doi":"10.1111/sapm.12785","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We present a nonlocal reaction-diffusion-advection system that models the predator–prey relationship between zooplankton and phytoplankton species in a eutrophic vertical water column. The invasion dynamics of zooplankton are analyzed in terms of the spontaneous death rates and buoyant/sinking velocities of both phytoplankton and zooplankton. Our analysis reveals that the zooplankton species can successfully invade and coexist with the phytoplankton only under conditions of low spontaneous death rates and matching buoyant/sinking velocities with phytoplankton. Additionally, we derived asymptotic profiles for the unique positive steady state of this system when one of the sinking or buoyant velocities of either phytoplankton or zooplankton approaches infinity, while the other velocity remains fixed. These findings highlight the significant role of advection due to buoyancy in shaping the dynamics of plankton ecosystems.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12785","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a nonlocal reaction-diffusion-advection system that models the predator–prey relationship between zooplankton and phytoplankton species in a eutrophic vertical water column. The invasion dynamics of zooplankton are analyzed in terms of the spontaneous death rates and buoyant/sinking velocities of both phytoplankton and zooplankton. Our analysis reveals that the zooplankton species can successfully invade and coexist with the phytoplankton only under conditions of low spontaneous death rates and matching buoyant/sinking velocities with phytoplankton. Additionally, we derived asymptotic profiles for the unique positive steady state of this system when one of the sinking or buoyant velocities of either phytoplankton or zooplankton approaches infinity, while the other velocity remains fixed. These findings highlight the significant role of advection due to buoyancy in shaping the dynamics of plankton ecosystems.

模拟浮游植物和浮游动物的非局部反应-扩散-对流系统
我们提出了一个非局部反应-扩散-对流系统,该系统模拟了富营养化垂直水柱中浮游动物和浮游植物之间的捕食-被捕食关系。浮游动物的入侵动力学是通过浮游植物和浮游动物的自发死亡率和浮沉速度来分析的。我们的分析表明,浮游动物物种只有在自发死亡率较低、浮力/下沉速度与浮游植物相匹配的条件下才能成功入侵浮游植物并与之共存。此外,当浮游植物或浮游动物的下沉速度或浮力速度中的一个速度接近无穷大,而另一个速度保持固定时,我们得出了该系统独特的正稳态的渐近曲线。这些发现凸显了浮力引起的平流在塑造浮游生物生态系统动力学中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信