{"title":"Comparing automated subcortical volume estimation methods; amygdala volumes estimated by FSL and FreeSurfer have poor consistency","authors":"Patrick Sadil, Martin A. Lindquist","doi":"10.1002/hbm.70027","DOIUrl":null,"url":null,"abstract":"<p>Subcortical volumes are a promising source of biomarkers and features in biosignatures, and automated methods facilitate extracting them in large, phenotypically rich datasets. However, while extensive research has verified that the automated methods produce volumes that are similar to those generated by expert annotation; the consistency of methods with each other is understudied. Using data from the UK Biobank, we compare the estimates of subcortical volumes produced by two popular software suites: FSL and FreeSurfer. Although most subcortical volumes exhibit good to excellent consistency across the methods, the tools produce diverging estimates of amygdalar volume. Through simulation, we show that this poor consistency can lead to conflicting results, where one but not the other tool suggests statistical significance, or where both tools suggest a significant relationship but in opposite directions. Considering these issues, we discuss several ways in which care should be taken when reporting on relationships involving amygdalar volume.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Subcortical volumes are a promising source of biomarkers and features in biosignatures, and automated methods facilitate extracting them in large, phenotypically rich datasets. However, while extensive research has verified that the automated methods produce volumes that are similar to those generated by expert annotation; the consistency of methods with each other is understudied. Using data from the UK Biobank, we compare the estimates of subcortical volumes produced by two popular software suites: FSL and FreeSurfer. Although most subcortical volumes exhibit good to excellent consistency across the methods, the tools produce diverging estimates of amygdalar volume. Through simulation, we show that this poor consistency can lead to conflicting results, where one but not the other tool suggests statistical significance, or where both tools suggest a significant relationship but in opposite directions. Considering these issues, we discuss several ways in which care should be taken when reporting on relationships involving amygdalar volume.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.