Sayed Ali Ahmad Alem, Mohammad Hossein Sabzvand, Parnian Govahi, Pooria Poormehrabi, Mahdi Hasanzadeh Azar, Sara Salehi Siouki, Reza Rashidi, Shayan Angizi, Sara Bagherifard
{"title":"Advancing the next generation of high-performance metal matrix composites through metal particle reinforcement","authors":"Sayed Ali Ahmad Alem, Mohammad Hossein Sabzvand, Parnian Govahi, Pooria Poormehrabi, Mahdi Hasanzadeh Azar, Sara Salehi Siouki, Reza Rashidi, Shayan Angizi, Sara Bagherifard","doi":"10.1007/s42114-024-01057-4","DOIUrl":null,"url":null,"abstract":"<div><p>Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last two decades, various categories of metal particles, i.e., intermetallics, bulk metallic glasses, high-entropy alloys, and shape memory alloys, have become popular as reinforcement choices for MMCs. These groups of metal particles offer a combination of outstanding physico-mechanical properties leading to unprecedented performances; moreover, they are significantly more compatible with the metal matrices compared to traditional ceramic reinforcements. In this review paper, the recent developments in MMCs are investigated. The importance of understanding the active mechanisms at the interface of the matrix and the reinforcement is highlighted. Moreover, the processing techniques required to manufacture high-performance MMCs are explored identifying the potential structural and functional applications. Finally, the potential advantages and current challenges associated with the use of each reinforcement category and the future developments are critically discussed. Based on the reported results, the use of metal particles as reinforcement in MMCs offers a promising avenue for the development of advanced materials with novel mechanical properties. Further progress requires more in-depth fundamental research to realize the active reinforcing mechanisms at the atomic level to precisely identify, understand, and tailor the properties of the integrated composite materials.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01057-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01057-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal matrix composites (MMCs) offer asignificant boost to achieve a wide range of advanced mechanical properties and improved performance for a variety of demanding applications. The addition of metal particles as reinforcement in MMCs is an exciting alternative to conventional ceramic reinforcements, which suffer from numerous shortcomings. Over the last two decades, various categories of metal particles, i.e., intermetallics, bulk metallic glasses, high-entropy alloys, and shape memory alloys, have become popular as reinforcement choices for MMCs. These groups of metal particles offer a combination of outstanding physico-mechanical properties leading to unprecedented performances; moreover, they are significantly more compatible with the metal matrices compared to traditional ceramic reinforcements. In this review paper, the recent developments in MMCs are investigated. The importance of understanding the active mechanisms at the interface of the matrix and the reinforcement is highlighted. Moreover, the processing techniques required to manufacture high-performance MMCs are explored identifying the potential structural and functional applications. Finally, the potential advantages and current challenges associated with the use of each reinforcement category and the future developments are critically discussed. Based on the reported results, the use of metal particles as reinforcement in MMCs offers a promising avenue for the development of advanced materials with novel mechanical properties. Further progress requires more in-depth fundamental research to realize the active reinforcing mechanisms at the atomic level to precisely identify, understand, and tailor the properties of the integrated composite materials.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.