{"title":"Generalized Berwald Projective Weyl (\\(GB\\widetilde{W}\\)) Metrics","authors":"Nasrin Sadeghzadeh","doi":"10.1007/s40010-024-00896-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new quantity in Finsler geometry, called the generalized Berwald projective Weyl (<span>\\(GB\\widetilde{W}\\)</span>) metric. The <i>C</i>-projective invariance of these metrics is demonstrated, and it is shown that they constitute a proper subset of the class of generalized Douglas (<i>GDW</i>) metrics. The paper also proves that all <i>GDW</i> metrics with vanishing Landsberg curvature are of R-quadratic type. The class of <i>GDW</i> metrics contains all Finsler metrics of scalar curvature, which provides an extension of the well-known Numata’s theorem.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"94 5","pages":"487 - 492"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-024-00896-6","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new quantity in Finsler geometry, called the generalized Berwald projective Weyl (\(GB\widetilde{W}\)) metric. The C-projective invariance of these metrics is demonstrated, and it is shown that they constitute a proper subset of the class of generalized Douglas (GDW) metrics. The paper also proves that all GDW metrics with vanishing Landsberg curvature are of R-quadratic type. The class of GDW metrics contains all Finsler metrics of scalar curvature, which provides an extension of the well-known Numata’s theorem.
本文介绍了芬斯勒几何中的一个新量,称为广义贝瓦尔德投影韦尔((GB\widetilde{W}\))度量。本文证明了这些度量的 C 投影不变性,并证明它们构成了广义道格拉斯(GDW)度量类的一个适当子集。论文还证明了所有兰茨贝格曲率消失的 GDW 度量都是 R 二次型的。GDW 公设类包含所有标量曲率的芬斯勒公设,这为著名的沼田定理提供了一个扩展。