{"title":"Maximizing work of finite-potential-reservoir isothermal-chemical-engines with generalized models of bypass-mass-leakage and mass-resistance","authors":"Lingen Chen, Shaojun Xia, Shuangshuang Shi","doi":"10.1007/s10973-024-13603-9","DOIUrl":null,"url":null,"abstract":"<div><p>Finite-potential-source (FPS) is a feature of isothermal-chemical-engine (ICE) cycle. Model of irreversible FPS iICE with generalized models of bypass-mass-leakage (BML) and mass-resistance is built. Mathematical conditions corresponding to maximum-work-output (MWO) of ICE are deduced using averaged-optimal-control method. Effects of FPS potential capacity characteristic, BML and mass-transfer laws on optimal-cycle-configurations (OCCs) are analyzed. Results obtained include eight special cases, and indicate that: Key component potential-difference between FPS and working-fluid is a constant with MWO objective for endoreversible FPS ICE with linear mass-transfer law (MTL); Ratio of square of difference of concentration of key-component (CKC) between FPS and working-fluid of ICE to CKC in working-fluid is constant with MWO objective for endoreversible FPS ICE with Fick’s diffusive MTL; Optimal CKC relations between FPS and working-fluid with MWO objective for irreversible FPS ICE with BML and mass-resistance are different from those with MWO objective for endoreversible FPS ICE with mass-resistance significantly; Optimal power-second law efficiency relation curves for endoreversible FPS and infinite-potential-source ICEs with mass-resistance are parabolic-type ones, while those for irreversible FPS and infinite-potential-source ICEs with BML and mass-resistance are loop-shaped ones.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 21","pages":"11817 - 11825"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13603-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Finite-potential-source (FPS) is a feature of isothermal-chemical-engine (ICE) cycle. Model of irreversible FPS iICE with generalized models of bypass-mass-leakage (BML) and mass-resistance is built. Mathematical conditions corresponding to maximum-work-output (MWO) of ICE are deduced using averaged-optimal-control method. Effects of FPS potential capacity characteristic, BML and mass-transfer laws on optimal-cycle-configurations (OCCs) are analyzed. Results obtained include eight special cases, and indicate that: Key component potential-difference between FPS and working-fluid is a constant with MWO objective for endoreversible FPS ICE with linear mass-transfer law (MTL); Ratio of square of difference of concentration of key-component (CKC) between FPS and working-fluid of ICE to CKC in working-fluid is constant with MWO objective for endoreversible FPS ICE with Fick’s diffusive MTL; Optimal CKC relations between FPS and working-fluid with MWO objective for irreversible FPS ICE with BML and mass-resistance are different from those with MWO objective for endoreversible FPS ICE with mass-resistance significantly; Optimal power-second law efficiency relation curves for endoreversible FPS and infinite-potential-source ICEs with mass-resistance are parabolic-type ones, while those for irreversible FPS and infinite-potential-source ICEs with BML and mass-resistance are loop-shaped ones.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.