A simplified LMTD approach to assess the effectiveness of a chevron-type plate heat exchanger

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Atul Bhattad, Vinay Atgur, B. Nageswara Rao, N. R. Banapurmath, G. Manavendra, Ashok M. Sajjan, Irfan Anjum Badruddin, Vijay Tambrallimath, Sarfaraz Kamangar, Mohamed Hussien
{"title":"A simplified LMTD approach to assess the effectiveness of a chevron-type plate heat exchanger","authors":"Atul Bhattad,&nbsp;Vinay Atgur,&nbsp;B. Nageswara Rao,&nbsp;N. R. Banapurmath,&nbsp;G. Manavendra,&nbsp;Ashok M. Sajjan,&nbsp;Irfan Anjum Badruddin,&nbsp;Vijay Tambrallimath,&nbsp;Sarfaraz Kamangar,&nbsp;Mohamed Hussien","doi":"10.1007/s10973-024-13573-y","DOIUrl":null,"url":null,"abstract":"<div><p>Designing heat exchangers (HEXs) for a wide range of applications, involves a complex interplay of factors like cost, maintenance, material selection, pressure drop, fluid flow configuration, and heat transfer. Due to this complexity, empirical relationships are used performance evaluation, focusing on heat transfer rate (<i>q</i>), overall heat transfer coefficient <span>\\(\\left( U \\right)\\)</span>, and effectiveness <span>\\(\\left( \\varepsilon \\right)\\)</span>. Testing is crucial to measure the outlet temperatures for specific inlet conditions and fluid flow characteristics. This paper introduces a simple and reliable iterative procedure for estimating cold (<span>\\(T_{\\text{co}}\\)</span>) and hot (<span>\\(T_{\\text{ho}}\\)</span>) fluid outlet temperatures in a Chevron plate heat exchanger (CPHE). This procedure relies on two basic equations of heat transfer rate (<i>q</i>), and logarithmic mean temperature difference (LMTD),<span>\\(\\Delta T_{\\text{lm}}\\)</span>, incorporating specified inlet parameters. The proposed approach was validated by comparing its predictions to measured data. The method is general and adaptable to other HEX types. by properly defining the temperature differences in the LMTD and evaluating the HEX performance using relevant empirical relationships for the output responses with estimates of <span>\\(T_{\\text{co}}\\)</span> and <span>\\(T_{\\text{ho}}\\)</span> to the inlet parameters. The estimated and measured cold fluid outlet temperature (<span>\\(T_{\\text{co}}\\)</span>) exhibited a relative error of 1.8 to 2.6%. Similarly, the hot fluid outlet temperature (<span>\\(T_{\\text{ho}}\\)</span>) showed a relative error of 2.4 to 3.5%. This work provides valuable insights for designers, enabling them to assess HEX performance before conducting costly and time-consuming testing.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 21","pages":"12205 - 12217"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13573-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing heat exchangers (HEXs) for a wide range of applications, involves a complex interplay of factors like cost, maintenance, material selection, pressure drop, fluid flow configuration, and heat transfer. Due to this complexity, empirical relationships are used performance evaluation, focusing on heat transfer rate (q), overall heat transfer coefficient \(\left( U \right)\), and effectiveness \(\left( \varepsilon \right)\). Testing is crucial to measure the outlet temperatures for specific inlet conditions and fluid flow characteristics. This paper introduces a simple and reliable iterative procedure for estimating cold (\(T_{\text{co}}\)) and hot (\(T_{\text{ho}}\)) fluid outlet temperatures in a Chevron plate heat exchanger (CPHE). This procedure relies on two basic equations of heat transfer rate (q), and logarithmic mean temperature difference (LMTD),\(\Delta T_{\text{lm}}\), incorporating specified inlet parameters. The proposed approach was validated by comparing its predictions to measured data. The method is general and adaptable to other HEX types. by properly defining the temperature differences in the LMTD and evaluating the HEX performance using relevant empirical relationships for the output responses with estimates of \(T_{\text{co}}\) and \(T_{\text{ho}}\) to the inlet parameters. The estimated and measured cold fluid outlet temperature (\(T_{\text{co}}\)) exhibited a relative error of 1.8 to 2.6%. Similarly, the hot fluid outlet temperature (\(T_{\text{ho}}\)) showed a relative error of 2.4 to 3.5%. This work provides valuable insights for designers, enabling them to assess HEX performance before conducting costly and time-consuming testing.

Abstract Image

评估雪佛龙型板式热交换器有效性的简化 LMTD 方法
设计应用广泛的热交换器(HEXs)涉及到成本、维护、材料选择、压降、流体流动配置和热传递等因素的复杂相互作用。由于这种复杂性,使用经验关系进行性能评估,重点关注传热速率(q)、整体传热系数(\left( U \right)\)和有效性(\left( \varepsilon\right)\)。测试对于测量特定入口条件和流体流动特性下的出口温度至关重要。本文介绍了一种简单可靠的迭代程序,用于估算雪佛龙板式换热器(CPHE)中冷流体(\(T_{\text{co}}\)和热流体(\(T_{\text{ho}}\)的出口温度。)该程序依赖于两个基本方程,即传热速率(q)和对数平均温差(LMTD),并结合指定的入口参数。通过将预测结果与测量数据进行比较,验证了所提出的方法。通过正确定义 LMTD 中的温差,并使用与入口参数有关的 \(T_{text{co}}\) 和 \(T_{text{ho}}) 估计输出响应的相关经验关系来评估 HEX 性能,该方法具有通用性,可适用于其他 HEX 类型。冷流体出口温度(\(T_{text{co}}\))的估计值和测量值的相对误差为 1.8%至 2.6%。同样,热流体出口温度(T_{text{ho}}\)的相对误差为 2.4% 至 3.5%。这项工作为设计人员提供了宝贵的见解,使他们能够在进行昂贵而耗时的测试之前评估 HEX 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信