{"title":"Crystallization of Na- and Cs-Bearing Borosilicate Melts: Results of Raman Spectroscopy","authors":"O. N. Koroleva, L. A. Nevolina, A. P. Krivenko","doi":"10.1134/S001670292470054X","DOIUrl":null,"url":null,"abstract":"<p>The structure of borosilicate glass and glass-ceramic materials of two compositions with different Cs/Na ratios was studied using Raman spectroscopy. The materials were synthesized in two different modes. The anionic environment of cesium in the glass and the structural rearrangements of the network during the formation of crystalline phases have been studied. X-ray diffraction patterns of glass-ceramic samples made it possible to determine the only crystalline phase CsBSi<sub>2</sub>O<sub>6</sub>, the structure of which was not clearly determined. The glass-ceramics of the studied composition can be used to immobilize cesium by incorporating it into the crystalline phases of the CsBSi<sub>2</sub>O<sub>6</sub> composition, while sodium is retained in the glassy matrix. These studies showed that the composition of the crystalline phase does not depend on the initial ratio of alkali cations, while the proportion of the ordered and amorphous phases is controlled by the kinetics of the melt cooling process.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 10","pages":"1057 - 1064"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S001670292470054X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The structure of borosilicate glass and glass-ceramic materials of two compositions with different Cs/Na ratios was studied using Raman spectroscopy. The materials were synthesized in two different modes. The anionic environment of cesium in the glass and the structural rearrangements of the network during the formation of crystalline phases have been studied. X-ray diffraction patterns of glass-ceramic samples made it possible to determine the only crystalline phase CsBSi2O6, the structure of which was not clearly determined. The glass-ceramics of the studied composition can be used to immobilize cesium by incorporating it into the crystalline phases of the CsBSi2O6 composition, while sodium is retained in the glassy matrix. These studies showed that the composition of the crystalline phase does not depend on the initial ratio of alkali cations, while the proportion of the ordered and amorphous phases is controlled by the kinetics of the melt cooling process.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.