On n-f-Semiclean Rings

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Avanish Kumar Chaturvedi, Sandeep Kumar, Nirbhay Kumar
{"title":"On n-f-Semiclean Rings","authors":"Avanish Kumar Chaturvedi,&nbsp;Sandeep Kumar,&nbsp;Nirbhay Kumar","doi":"10.1007/s40010-024-00897-5","DOIUrl":null,"url":null,"abstract":"<div><p>The class of <i>n</i>-f-semiclean rings lies between the classes of <i>n</i>-f-clean rings and <span>\\((n+1)\\)</span>-f-clean rings. We give a characterization of <i>n</i>-f-semiclean rings in terms of its Pierce stalks. We prove that if <i>e</i> is an idempotent such that <i>eRe</i> and <span>\\((1-e)R(1-e)\\)</span> are <i>n</i>-f-semiclean, then <i>R</i> is <i>n</i>-f-semiclean. Further, we find that matrix rings of an <i>n</i>-f-semiclean ring are <i>n</i>-f-semiclean. We give some characterizations of <i>n</i>-f-semiclean rings in terms of their extension rings.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":"94 5","pages":"493 - 500"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-024-00897-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The class of n-f-semiclean rings lies between the classes of n-f-clean rings and \((n+1)\)-f-clean rings. We give a characterization of n-f-semiclean rings in terms of its Pierce stalks. We prove that if e is an idempotent such that eRe and \((1-e)R(1-e)\) are n-f-semiclean, then R is n-f-semiclean. Further, we find that matrix rings of an n-f-semiclean ring are n-f-semiclean. We give some characterizations of n-f-semiclean rings in terms of their extension rings.

关于 n-f-Semiclean 环
n-f-semiclean 环类介于 n-f-clean 环类和\((n+1)\)-f-clean 环类之间。我们根据 n-f-semiclean 环的皮尔斯茎给出了它的特征。我们证明,如果 e 是一个幂等元素,使得 eRe 和 \((1-e)R(1-e)\) 是 n-f-semiclean 的,那么 R 就是 n-f-semiclean 的。此外,我们还发现 n-f-semiclean 环的矩阵环也是 n-f-semiclean 环。我们用 n-f-semiclean 环的扩展环给出了 n-f-semiclean 环的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信