Synthesis and Characterization of Thiol-Functionalized Magnetic (Core) Mesoporous Silica-Titanium (Shell-Shell) Nanocomposites for Efficient Copper Ions Removal from Aqueous Solutions
Aurangzeb Junejo, Irfan Ahmed Abbasi, Du Ri Park, Moon Jihee, Ick Tae Yeom
{"title":"Synthesis and Characterization of Thiol-Functionalized Magnetic (Core) Mesoporous Silica-Titanium (Shell-Shell) Nanocomposites for Efficient Copper Ions Removal from Aqueous Solutions","authors":"Aurangzeb Junejo, Irfan Ahmed Abbasi, Du Ri Park, Moon Jihee, Ick Tae Yeom","doi":"10.1007/s11270-024-07638-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles were synthesized simultaneously with mesoporous silica (MCM-41), followed by the attachment of mesoporous titanium dioxide (mTiO<sub>2</sub>) to obtain Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>. 3-mercaptopropyl trimethoxysilane (MPTMS) was used as a precursor for the functionalization of thiol over magnetic mesoporous titania-silica is referred to as Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>@SH. Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), zeta potentials analysis, and Brunauer–Emmett–Teller (BET) analysis were used to characterize the adsorbents. Parameters that influence adsorption, such as pH, adsorbent dosage, contact time, adsorbate concentration, and thermodynamics, were examined for the removal of copper ions from aqueous solutions. pH 6.5 was determined to be the optimal condition for the experiments. The Sips isotherm and pseudo-second-order model exhibited the highest degree of fit for both adsorbents Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub> and Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>@SH, respectively. The maximum adsorption capacity of Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>@SH was 30.08 mg/g which was reported higher than another adsorbent, and further investigation was carried out for Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>@SH like, thermodynamic analysis and recyclability. The thermodynamics demonstrated that the adsorption was spontaneous and endothermic, and the positive ΔS° also increased the disorder or randomness of the system. Fe<sub>3</sub>O<sub>4</sub>@MCM-41@mTiO<sub>2</sub>@SH also has the potential to be recycled up to five times for copper ions, with approximately 70% removal efficiency from aqueous solutions.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07638-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, magnetite (Fe3O4) nanoparticles were synthesized simultaneously with mesoporous silica (MCM-41), followed by the attachment of mesoporous titanium dioxide (mTiO2) to obtain Fe3O4@MCM-41@mTiO2. 3-mercaptopropyl trimethoxysilane (MPTMS) was used as a precursor for the functionalization of thiol over magnetic mesoporous titania-silica is referred to as Fe3O4@MCM-41@mTiO2@SH. Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), zeta potentials analysis, and Brunauer–Emmett–Teller (BET) analysis were used to characterize the adsorbents. Parameters that influence adsorption, such as pH, adsorbent dosage, contact time, adsorbate concentration, and thermodynamics, were examined for the removal of copper ions from aqueous solutions. pH 6.5 was determined to be the optimal condition for the experiments. The Sips isotherm and pseudo-second-order model exhibited the highest degree of fit for both adsorbents Fe3O4@MCM-41@mTiO2 and Fe3O4@MCM-41@mTiO2@SH, respectively. The maximum adsorption capacity of Fe3O4@MCM-41@mTiO2@SH was 30.08 mg/g which was reported higher than another adsorbent, and further investigation was carried out for Fe3O4@MCM-41@mTiO2@SH like, thermodynamic analysis and recyclability. The thermodynamics demonstrated that the adsorption was spontaneous and endothermic, and the positive ΔS° also increased the disorder or randomness of the system. Fe3O4@MCM-41@mTiO2@SH also has the potential to be recycled up to five times for copper ions, with approximately 70% removal efficiency from aqueous solutions.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.