Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Aleksis Vuoksenmaa
{"title":"Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation","authors":"Aleksis Vuoksenmaa","doi":"10.1007/s10955-024-03374-w","DOIUrl":null,"url":null,"abstract":"<div><p>The discrete nonlinear Schrödinger equation on <span>\\({\\mathbb Z}^d\\)</span>, <span>\\(d \\ge 1\\)</span> is an example of a dispersive nonlinear wave system. Being a Hamiltonian system that conserves also the <span>\\(\\ell ^2({\\mathbb Z}^d)\\)</span>-norm, the well-posedness of the corresponding Cauchy problem follows for square-summable initial data. In this paper, we prove that the well-posedness continues to hold for initial data that can grow towards infinity, namely anything that has at most a certain power law growth far away from the origin. The growth condition is loose enough to guarantee that, at least in dimension <span>\\(d=1\\)</span>, initial data sampled from any reasonable equilibrium distribution of the defocusing DNLS satisfies it almost surely.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03374-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03374-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discrete nonlinear Schrödinger equation on \({\mathbb Z}^d\), \(d \ge 1\) is an example of a dispersive nonlinear wave system. Being a Hamiltonian system that conserves also the \(\ell ^2({\mathbb Z}^d)\)-norm, the well-posedness of the corresponding Cauchy problem follows for square-summable initial data. In this paper, we prove that the well-posedness continues to hold for initial data that can grow towards infinity, namely anything that has at most a certain power law growth far away from the origin. The growth condition is loose enough to guarantee that, at least in dimension \(d=1\), initial data sampled from any reasonable equilibrium distribution of the defocusing DNLS satisfies it almost surely.

无限离散非线性薛定谔方程的动力学原理
关于 \({\mathbb Z}^d\), \(d \ge 1\) 的离散非线性薛定谔方程是一个色散非线性波系统的例子。作为一个同时保持 \(\ell ^2({\mathbb Z}^d)\)-规范的哈密顿系统,相应的考奇问题对于可平方和的初始数据具有很好的解决性。在本文中,我们证明了对于可以向无穷大增长的初始数据,即远离原点最多具有一定幂律增长的任何初始数据,井提出性仍然成立。这个增长条件足够宽松,足以保证至少在维度(d=1)上,从任何合理的散焦 DNLS 平衡分布中采样的初始数据几乎肯定满足这个条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信