Automated detection of element-specific features in LIBS spectra

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Zuzana Gajarska, Anna Faruzelová, Erik Képeš, David Prochazka, Pavel Pořízka, Jozef Kaiser, Hans Lohninger and Andreas Limbeck
{"title":"Automated detection of element-specific features in LIBS spectra","authors":"Zuzana Gajarska, Anna Faruzelová, Erik Képeš, David Prochazka, Pavel Pořízka, Jozef Kaiser, Hans Lohninger and Andreas Limbeck","doi":"10.1039/D4JA00247D","DOIUrl":null,"url":null,"abstract":"<p >This work introduces a novel semi-automatic approach to identify elemental lines in spectra obtained <em>via</em> laser-induced breakdown spectroscopy (LIBS). The algorithm is based on unique spectral fingerprints of individual elements that are configured into comb-like filters. The element-specific filters are then correlated with measured spectra for semi-supervised qualitative analysis of samples. Spectral variations are accommodated by adjusting the micro-parameters of the comb filter. This step ensures accurate results despite minor deviations from the instrument's ideal calibration due to instrumental fluctuations, <em>e.g.</em>, drift in spectral calibration or line broadening. Additionally, the algorithm can autonomously detect spectral interference regions, aiding the analyst in verifying spectral lines where such interference may occur. The paper presents a comprehensive overview of the algorithm and discusses the main concepts, parameters, optimization steps, and limitations using Echelle spectra of two standard reference materials with different complexity: borosilicate glass (NIST 1411) and low-alloyed steel (SUS1R). Furthermore, the transferability of the approach to different scenarios and real-life applications is demonstrated using a single-channel Czerny–Turner spectrum of an amalgam filling extracted from a hyperspectral image of a human tooth. A demo of the algorithm is publicly available for non-commercial purposes.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 12","pages":" 3151-3161"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ja/d4ja00247d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00247d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a novel semi-automatic approach to identify elemental lines in spectra obtained via laser-induced breakdown spectroscopy (LIBS). The algorithm is based on unique spectral fingerprints of individual elements that are configured into comb-like filters. The element-specific filters are then correlated with measured spectra for semi-supervised qualitative analysis of samples. Spectral variations are accommodated by adjusting the micro-parameters of the comb filter. This step ensures accurate results despite minor deviations from the instrument's ideal calibration due to instrumental fluctuations, e.g., drift in spectral calibration or line broadening. Additionally, the algorithm can autonomously detect spectral interference regions, aiding the analyst in verifying spectral lines where such interference may occur. The paper presents a comprehensive overview of the algorithm and discusses the main concepts, parameters, optimization steps, and limitations using Echelle spectra of two standard reference materials with different complexity: borosilicate glass (NIST 1411) and low-alloyed steel (SUS1R). Furthermore, the transferability of the approach to different scenarios and real-life applications is demonstrated using a single-channel Czerny–Turner spectrum of an amalgam filling extracted from a hyperspectral image of a human tooth. A demo of the algorithm is publicly available for non-commercial purposes.

Abstract Image

自动检测 LIBS 光谱中的特定元素特征
这项工作介绍了一种新颖的半自动方法,用于识别通过激光诱导击穿光谱(LIBS)获得的光谱中的元素谱线。该算法基于配置成梳状滤波器的单个元素的独特光谱指纹。然后将元素特定滤波器与测量光谱关联起来,对样品进行半监督定性分析。通过调整梳状滤波器的微参数来适应光谱变化。这一步骤可确保在仪器波动(如光谱校准漂移或线展宽)导致仪器理想校准出现微小偏差的情况下,仍能得出准确的结果。此外,该算法还能自动检测光谱干扰区域,帮助分析师验证可能出现干扰的谱线。本文全面介绍了该算法,并利用两种不同复杂程度的标准参考材料:硼硅玻璃(NIST 1411)和低合金钢(SUS1R)的埃歇尔光谱,讨论了该算法的主要概念、参数、优化步骤和局限性。此外,利用从人类牙齿的高光谱图像中提取的汞合金填充物的单通道 Czerny-Turner 光谱,演示了该方法在不同场景和实际应用中的可移植性。该算法的演示可公开用于非商业目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信