Pieter Nachtergaele , Ozan Kocak , Yblin Roman Escobar , Jordy Motte , Dries Gabriels , Leopold Mottet , Jo Dewulf
{"title":"Does enzymatic catalysis lead to more sustainable chemicals production? A life cycle sustainability assessment of isopropyl palmitate†","authors":"Pieter Nachtergaele , Ozan Kocak , Yblin Roman Escobar , Jordy Motte , Dries Gabriels , Leopold Mottet , Jo Dewulf","doi":"10.1039/d4gc04514a","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a comprehensive Life Cycle Sustainability Assessment (LCSA) is performed assessing environmental, economic and social impacts of switching from chemical to enzymatic catalysis for the esterification of Isopropyl palmitate (IPP). A dedicated LCSA methodology with a common goal, system boundary and life cycle inventory is presented. A 7 to 13% reduction in environmental impacts was found due to less hazardous waste formation, lower feedstock consumption and reduced steam usage. The social medium risk hours increase by 9% due to a longer production time, however, certain social benefits which were identified by stakeholder interviews, such as improved safety for workers, are not properly captured by the social impacts database used. Despite reductions in utility and feedstock costs, the total operating costs are higher (+40%) due to the immobilized enzyme cost and higher labour costs. Nevertheless, profitability indicators show that switching to enzymatic production is likely to be profitable. To reduce costs, optimization efforts should focus on reducing the batch time and increasing enzyme reuse. From a social and environmental perspective, upstream impacts linked to palmitic acid and isopropyl alcohol production should be addressed.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 23","pages":"Pages 11662-11672"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc04514a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224008719","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a comprehensive Life Cycle Sustainability Assessment (LCSA) is performed assessing environmental, economic and social impacts of switching from chemical to enzymatic catalysis for the esterification of Isopropyl palmitate (IPP). A dedicated LCSA methodology with a common goal, system boundary and life cycle inventory is presented. A 7 to 13% reduction in environmental impacts was found due to less hazardous waste formation, lower feedstock consumption and reduced steam usage. The social medium risk hours increase by 9% due to a longer production time, however, certain social benefits which were identified by stakeholder interviews, such as improved safety for workers, are not properly captured by the social impacts database used. Despite reductions in utility and feedstock costs, the total operating costs are higher (+40%) due to the immobilized enzyme cost and higher labour costs. Nevertheless, profitability indicators show that switching to enzymatic production is likely to be profitable. To reduce costs, optimization efforts should focus on reducing the batch time and increasing enzyme reuse. From a social and environmental perspective, upstream impacts linked to palmitic acid and isopropyl alcohol production should be addressed.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.