Patrick O. Saboe , Yudong Li , Emily G. Tomashek , Eric C. D. Tan , Xiaowen Chen , Louis A. Chirban , Yian Chen , Daniel J. Schell , Eric M. Karp , Gregg T. Beckham
{"title":"Solid–liquid separation of lignocellulosic sugars from biomass by rotating ceramic disc filtration†","authors":"Patrick O. Saboe , Yudong Li , Emily G. Tomashek , Eric C. D. Tan , Xiaowen Chen , Louis A. Chirban , Yian Chen , Daniel J. Schell , Eric M. Karp , Gregg T. Beckham","doi":"10.1039/d4gc04533e","DOIUrl":null,"url":null,"abstract":"<div><div>In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid–liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid–liquid separations.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 23","pages":"Pages 11587-11599"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc04533e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224008793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In many biomass conversion processes, the separation of cellulosic sugars from residual, lignin-rich solids is a critical step, and achieving high recovery yields of sugars by conventional tangential crossflow and vacuum filtration is challenged by the presence of biomass solids, which rapidly foul filters, resulting in decreased throughput. Considering the performance limitations of traditional filtration methods, dynamic filtration, which generates high shear at the membrane surface to decrease fouling, is emerging as a viable alternative for demanding solid–liquid separations. For high solids separations, there is little available information regarding the performance, limitations, and energy consumption of dynamic filtration. To that end, here we characterized the performance of a dynamic filtration module, specifically a rotating ceramic disc (RCD) filter, for the aseptic recovery of cellulosic sugars from biomass solids following pretreatment and enzymatic hydrolysis. We show how RCD rotational velocity and percent biomass solids impact the filter throughput. Additionally, we used computational fluid dynamics (CFD) simulations to estimate the shear rate at the membrane surface and to visualize hydrodynamic profiles within the module. With the combined CFD simulations and experimental results, we estimated the energy demand and operating expenses for a viable dynamic filtration system operating with a lignocellulosic feed slurry. Our results indicate that an RCD filter can achieve ≥95% recovery of sugars and produce a retentate slurry containing 12 wt% insoluble solids with low energy consumption (a 2.2-fold improvement over cross-flow filtration) and low operating costs ($0.06 per kg sugars). These results show a viable path towards operationally reliable, energy efficient, and cost-effective separations of sterilized cellulosic sugars from biomass solids and highlight the potential of dynamic filtration systems for challenging solid–liquid separations.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.