Bias-Corrected Joint Spectral Embedding for Multilayer Networks With Invariant Subspace: Entrywise Eigenvector Perturbation and Inference

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Fangzheng Xie
{"title":"Bias-Corrected Joint Spectral Embedding for Multilayer Networks With Invariant Subspace: Entrywise Eigenvector Perturbation and Inference","authors":"Fangzheng Xie","doi":"10.1109/TIT.2024.3471953","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to estimate the invariant subspace across heterogeneous multiple networks using a novel bias-corrected joint spectral embedding algorithm. The proposed algorithm recursively calibrates the diagonal bias of the sum of squared network adjacency matrices by leveraging the closed-form bias formula and iteratively updates the subspace estimator using the most recent estimated bias. Correspondingly, we establish a complete recipe for the entrywise subspace estimation theory for the proposed algorithm, including a sharp entrywise subspace perturbation bound and the entrywise eigenvector central limit theorem. Leveraging these results, we settle two multiple network inference problems: the exact community detection in multilayer stochastic block models and the hypothesis testing of the equality of membership profiles in multilayer mixed membership models. Our proof relies on delicate leave-one-out and leave-two-out analyses that are specifically tailored to block-wise symmetric random matrices and a martingale argument that is of fundamental interest for the entrywise eigenvector central limit theorem.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"9036-9083"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10701477/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose to estimate the invariant subspace across heterogeneous multiple networks using a novel bias-corrected joint spectral embedding algorithm. The proposed algorithm recursively calibrates the diagonal bias of the sum of squared network adjacency matrices by leveraging the closed-form bias formula and iteratively updates the subspace estimator using the most recent estimated bias. Correspondingly, we establish a complete recipe for the entrywise subspace estimation theory for the proposed algorithm, including a sharp entrywise subspace perturbation bound and the entrywise eigenvector central limit theorem. Leveraging these results, we settle two multiple network inference problems: the exact community detection in multilayer stochastic block models and the hypothesis testing of the equality of membership profiles in multilayer mixed membership models. Our proof relies on delicate leave-one-out and leave-two-out analyses that are specifically tailored to block-wise symmetric random matrices and a martingale argument that is of fundamental interest for the entrywise eigenvector central limit theorem.
具有不变子空间的多层网络的偏差校正联合谱嵌入:入口特征向量扰动与推理
在本文中,我们提出使用一种新颖的偏差校正联合频谱嵌入算法来估计异构多重网络的不变子空间。该算法利用闭式偏差公式递归校准网络邻接矩阵平方和的对角线偏差,并利用最新估计的偏差迭代更新子空间估计器。相应地,我们为所提算法建立了完整的入口子空间估计理论,包括尖锐的入口子空间扰动约束和入口特征向量中心极限定理。利用这些结果,我们解决了两个多重网络推断问题:多层随机块模型中的精确群落检测和多层混合成员模型中成员特征相等的假设检验。我们的证明依赖于专为块对称随机矩阵量身定制的微妙的 "留一 "和 "留二 "分析,以及对入口特征向量中心极限定理具有重要意义的马氏论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信