{"title":"GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion","authors":"Jiaxin Wei;Stefan Leutenegger","doi":"10.1109/LRA.2024.3502065","DOIUrl":null,"url":null,"abstract":"Traditional volumetric fusion algorithms preserve the spatial structure of 3D scenes, which is beneficial for many tasks in computer vision and robotics. However, they often lack realism in terms of visualization. Emerging 3D Gaussian splatting bridges this gap, but existing Gaussian-based reconstruction methods often suffer from artifacts and inconsistencies with the underlying 3D structure, and struggle with real-time optimization, unable to provide users with immediate feedback in high quality. One of the bottlenecks arises from the massive amount of Gaussian parameters that need to be updated during optimization. Instead of using 3D Gaussian as a standalone map representation, we incorporate it into a volumetric mapping system to take advantage of geometric information and propose to use a quadtree data structure on images to drastically reduce the number of splats initialized. In this way, we simultaneously generate a compact 3D Gaussian map with fewer artifacts and a volumetric map on the fly. Our method, GSFusion, significantly enhances computational efficiency without sacrificing rendering quality, as demonstrated on both synthetic and real datasets.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11865-11872"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10758260/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional volumetric fusion algorithms preserve the spatial structure of 3D scenes, which is beneficial for many tasks in computer vision and robotics. However, they often lack realism in terms of visualization. Emerging 3D Gaussian splatting bridges this gap, but existing Gaussian-based reconstruction methods often suffer from artifacts and inconsistencies with the underlying 3D structure, and struggle with real-time optimization, unable to provide users with immediate feedback in high quality. One of the bottlenecks arises from the massive amount of Gaussian parameters that need to be updated during optimization. Instead of using 3D Gaussian as a standalone map representation, we incorporate it into a volumetric mapping system to take advantage of geometric information and propose to use a quadtree data structure on images to drastically reduce the number of splats initialized. In this way, we simultaneously generate a compact 3D Gaussian map with fewer artifacts and a volumetric map on the fly. Our method, GSFusion, significantly enhances computational efficiency without sacrificing rendering quality, as demonstrated on both synthetic and real datasets.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.