Dielectric Breakdown Mechanisms in High-κ Antimony Trioxide (Sb2O3)

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Alok Ranjan*, Lunjie Zeng and Eva Olsson*, 
{"title":"Dielectric Breakdown Mechanisms in High-κ Antimony Trioxide (Sb2O3)","authors":"Alok Ranjan*,&nbsp;Lunjie Zeng and Eva Olsson*,&nbsp;","doi":"10.1021/acsaelm.4c0181810.1021/acsaelm.4c01818","DOIUrl":null,"url":null,"abstract":"<p >High-κ gate dielectrics compatible with two-dimensional (2D) materials are crucial for advanced electronics, and Sb<sub>2</sub>O<sub>3</sub> (antimony trioxide) shows significant potential. Here, we show that the soft breakdown induces oxygen vacancies and migration of copper into Sb<sub>2</sub>O<sub>3</sub>. Hard breakdown, driven by joule heating, gives rise to a substantial temperature increase, leading to morphological transformations and oxygen redistribution. In situ transmission electron microscopy (in situ TEM) measurements correlated with device performance show the formation of nanoconducting filaments due to the increased concentration of oxygen vacancies and copper migration in connection with the soft breakdown. The hard breakdown is associated with the formation of antimony-enriched nanocrystals. These findings offer critical insights into the suitability of Sb<sub>2</sub>O<sub>3</sub> as a high-κ gate dielectric.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"6 11","pages":"8540–8548 8540–8548"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaelm.4c01818","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01818","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-κ gate dielectrics compatible with two-dimensional (2D) materials are crucial for advanced electronics, and Sb2O3 (antimony trioxide) shows significant potential. Here, we show that the soft breakdown induces oxygen vacancies and migration of copper into Sb2O3. Hard breakdown, driven by joule heating, gives rise to a substantial temperature increase, leading to morphological transformations and oxygen redistribution. In situ transmission electron microscopy (in situ TEM) measurements correlated with device performance show the formation of nanoconducting filaments due to the increased concentration of oxygen vacancies and copper migration in connection with the soft breakdown. The hard breakdown is associated with the formation of antimony-enriched nanocrystals. These findings offer critical insights into the suitability of Sb2O3 as a high-κ gate dielectric.

高κ三氧化二锑(Sb2O3)中的介质击穿机制
与二维(2D)材料兼容的高κ栅极电介质对先进电子技术至关重要,而 Sb2O3(三氧化二锑)则显示出巨大的潜力。在这里,我们展示了软击穿会诱发氧空位和铜迁移到 Sb2O3 中。焦耳加热驱动的硬击穿会导致温度大幅升高,从而导致形态转变和氧的重新分布。与器件性能相关的原位透射电子显微镜(in situ TEM)测量结果表明,由于氧空位浓度的增加以及与软击穿相关的铜迁移,形成了纳米导电丝。硬击穿则与富锑纳米晶体的形成有关。这些发现为了解 Sb2O3 作为高κ栅极电介质的适用性提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信