Structural Gating Enhances Long-Distance Light-Driven Interfacial Electron Transfer

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Quentin R. Loague, Marzieh Heidari, Hayden J. Mann, Evgeny O. Danilov, Felix N. Castellano, Elena Galoppini* and Gerald J. Meyer*, 
{"title":"Structural Gating Enhances Long-Distance Light-Driven Interfacial Electron Transfer","authors":"Quentin R. Loague,&nbsp;Marzieh Heidari,&nbsp;Hayden J. Mann,&nbsp;Evgeny O. Danilov,&nbsp;Felix N. Castellano,&nbsp;Elena Galoppini* and Gerald J. Meyer*,&nbsp;","doi":"10.1021/acscentsci.4c0110610.1021/acscentsci.4c01106","DOIUrl":null,"url":null,"abstract":"<p >Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex <i>opens</i> a “structural gate” by planarization of otherwise rotating phenyl rings in <i>p-</i>phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface. Interfacial electron transfer to the oxide restores rotation and <i>closes</i> the gate to the unwanted recombination reaction. This structural gating results in nearly quantitative long-distance (&gt;20 Å) interfacial electron transfer that occurs ∼1000 times faster than transfer in the opposite direction. A comparative kinetic study of these complexes with those that contain ionic bridge units, without gating function, as a function of the applied potential and hence −Δ<i>G</i>° provided a physical basis for the structural gating. A small distance-dependent reorganization energy with weak electronic coupling underlies the success of this gate that enables efficient long-distance electron transfer and slow recombination.</p><p >A light-triggered structural gate provides a conjugated pathway for efficient long-distance vectorial electron transfer to a conductive oxide and inhibits transfer from the oxide.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 11","pages":"2132–2144 2132–2144"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscentsci.4c01106","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.4c01106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex opens a “structural gate” by planarization of otherwise rotating phenyl rings in p-phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface. Interfacial electron transfer to the oxide restores rotation and closes the gate to the unwanted recombination reaction. This structural gating results in nearly quantitative long-distance (>20 Å) interfacial electron transfer that occurs ∼1000 times faster than transfer in the opposite direction. A comparative kinetic study of these complexes with those that contain ionic bridge units, without gating function, as a function of the applied potential and hence −ΔG° provided a physical basis for the structural gating. A small distance-dependent reorganization energy with weak electronic coupling underlies the success of this gate that enables efficient long-distance electron transfer and slow recombination.

A light-triggered structural gate provides a conjugated pathway for efficient long-distance vectorial electron transfer to a conductive oxide and inhibits transfer from the oxide.

结构门控可增强长距离光驱动的界面电子转移
结构门提供了一种分子手段,使电子优先向一个所需的矢量方向转移,这是人工光合作用应用所需的一种行为。在本文使用的界面上,过渡金属复合物对可见光的吸收通过对苯乙炔(PE)桥单元中原本旋转的苯基环的平面化打开了一个 "结构门"。平面化为电子流向导电氧化物表面提供了共轭途径。表面间的电子转移到氧化物上,恢复了旋转,并关闭了不需要的重组反应的闸门。这种结构门导致近乎定量的长距离(20 Å)界面电子转移,其速度比反方向转移快 1000 倍。对这些复合物与含有离子桥单元的复合物(不含门控功能)进行的动力学比较研究为结构门控提供了物理基础。光触发结构门提供了一条共轭途径,可将电子高效地长距离矢量转移到导电氧化物上,并抑制电子从氧化物上转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信